Skip to main content
Log in

Functions of lumican and fibromodulin: Lessons from knockout mice

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Lumican and fibromodulin are collagen-binding leucine-rich proteoglycans widely distributed in interstitial connective tissues. The phenotypes of lumican-null (Lum −/−), Fibromodulin-null (Fmod −/−) and compound double-null (Lum −/− Fmod −/−) mice identify a broad range of tissues where these two proteoglycans have overlapping and unique roles in modulating the extracellular matrix and cellular behavior. The lumican-deficient mice have reduced corneal transparency and skin fragility. The Lum −/− Fmod −/− mice are smaller than their wildtype littermates, display gait abnormality, joint laxity and age-dependent osteoarthritis. Misaligned knee patella, severe knee dysmorphogenesis and extreme tendon weakness are the likely cause for joint-laxity. Fibromodulin deficiency alone leads to significant reduction in tendon stiffness in the Lum +/+ Fmod −/− mice, with further loss in stiffness in a lumican gene dose-dependent way. At the level of ultrastructure, the Lum −/− cornea, skin and tendon show irregular collagen fibril contours and increased fibril diameter. The Fmod −/− tendon contains irregular contoured collagen fibrils, with increased frequency of small diameter fibrils. The tendons of Lum −/− Fmod −/− have an abnormally high frequency of small and large diameter fibrils indicating a de-regulation of collagen fibril formation and maturation. In tissues like the tendon, where both proteoglycans are present, fibromodulin may be required early in collagen fibrillogenesis to stabilize small-diameter fibril-intermediates and lumican may be needed at a later stage, primarily to limit lateral growth of fibrils Published in 2003.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Iozzo RV, The biology of the small leucine-rich proteoglycans. Functional network of interactive proteins, J Biol Chem 274, 18843–6 (1999).

    Google Scholar 

  2. Kresse H, Hausser H, Schonherr E, Small proteoglycans, Experientia 49, 403–16 (1993).

    PubMed  Google Scholar 

  3. Bech-Hansen NT, Naylor MJ, Maybaum TA, Sparkes RL, Koop B, Birch DG, Bergen AA, Prinsen CF, Polomeno RC, Gal A, Drack AV, Musarella MA, Jacobson SG, Young RS, Weleber RG, Mutations in NYX, encoding the leucine-rich proteoglycan nyctalopin, cause X-linked complete congenital stationary night blindness, Nat Genet 26, 319–23 (2000).

    PubMed  Google Scholar 

  4. Henry SP, Takanosu M, Boyd TC, Mayne PM, Eberspaecher H, Zhou W, de Crombrugghe B, Hook M, Mayne R, Expression pattern and gene characterization of asporin. A newly discovered member of the leucine-rich repeat protein family, J Biol Chem 276, 12212–21 (2001).

    PubMed  Google Scholar 

  5. Antonsson P, Heinegard D, Oldberg A, Structure and deduced amino acid sequence of the human fibromodulin gene, Biochim Biophys Acta 1174, 204–6 (1993).

    PubMed  Google Scholar 

  6. Blochberger T, Vergnes J, Hempel J, Hassell J, cDNA to chick lumican (corneal keratan sulfate proteoglycan) reveals homology to the small interstitial proteoglycan gene family and expression in muscle and intestine, J Biol Chem 267, 347–52(1992).

    PubMed  Google Scholar 

  7. Matsushima N, Ohyanagi T, Tanaka T, Kretsinger RH, Supermotifs and evolution of tandem leucine-rich repeats within the small proteoglycans-Biglycan, decorin, lumican, fibromodulin, PRELP, keratocan, osteoadherin, epiphycan, and osteoglycin, Proteins 38, 210–25 (2000).

    PubMed  Google Scholar 

  8. Chakravarti S, Magnuson T, Localization of mouse lumican (keratan sulfate proteoglycan) to distal chromosome 10, Mammalian Genome 6, 367–8 (1995).

    PubMed  Google Scholar 

  9. Chakravarti S, Stallings RL, SundarRaj N, Cornuet PK, Hassell JR, Primary structure of human lumican (keratan sulfate proteoglycan) and localization of the gene (LUM) to chromosome 12q21.3-q22, Genomics 27, 481–8 (1995).

    PubMed  Google Scholar 

  10. Sztrolovics R, Chen XN, Grover J, Roughley PJ, Korenberg JR, Localization of the human fibromodulin gene (FMOD) to chromosome 1q32 and completion of the cDNA sequence, Genomics 23, 715–7 (1994).

    PubMed  Google Scholar 

  11. Blochberger T, Cornuet P, Hassell J, Isolation and partial characterization of lumican and decorin from adult chicken corneas, J Biol Chem 267, 20613–9 (1992).

    PubMed  Google Scholar 

  12. Chakravarti S, Magnuson T, Lass J, Jepsen K, LaMantia C, Carroll H, Lumican regulates collagen fibril assembly: Skin fragility and corneal opacity in the absence of lumican, J Cell Biol 141, 1277–86 (1998).

    PubMed  Google Scholar 

  13. Dunlevy JR, Beales MP, Berryhill BL, Cornuet PK, Hassell JR, Expression of the keratan sulfate proteoglycans lumican, keratocan and osteoglycin/mimecan during chick corneal development, Exp Eye Res 70, 349–62 (2000).

    PubMed  Google Scholar 

  14. Saamanen AM, Salminen HJ, Rantakokko AJ, Heinegard D, Vuorio EI, Murine fibromodulin: cDNA and genomic structure, and age-related expression and distribution in the knee joint, Biochem J 355, 577–85 (2001).

    PubMed  Google Scholar 

  15. Rada JA, Cornuet PK, Hassell JH, Regulation of corneal collagen fibrillogenesis in vitro by corneal keratan sulfate proteoglycan (lumican) and decorin core proteins, Exp Eye Res 56, 635–48 (1993).

    PubMed  Google Scholar 

  16. Svensson L, Narlid I, Oldberg A, Fibromodulin and lumican bind to the same region on collagen type I fibrils, FEBS Lett 470, 178–82 (2000).

    PubMed  Google Scholar 

  17. Vogel KG, Paulsson M, Heinegard D, Specific inhibition of type I and type II collagen fibrillogenesis by the small proteoglycans of tendon, Biochem J 223, 587–97 (1984).

    PubMed  Google Scholar 

  18. Plaas A, Neame P, Nivens C, Reiss L, Identification of the keratan sulfate attachment sites on bovine fibromodulin, J Biol Chemistry 265, 20634–40 (1990).

    Google Scholar 

  19. Dunlevy JR, Neame PJ, Vergnes JP, Hassell JR, Identification of the N-linked oligosaccharide sites in chick corneal lumican and keratocan that receive keratan sulfate, J Biol Chem 273, 9615–21 (1998).

    PubMed  Google Scholar 

  20. Funderburgh JL, Funderburgh ML, Mann MM, Conrad GW, Unique glycosylation of three keratan sulfate proteoglycan isoforms, J Biol Chem 266, 14226–31 (1991).

    PubMed  Google Scholar 

  21. Nilsson B, Nakazawa K, Hassell JR, Newsome DA, Hascall VC, Structure of oligosaccharides and the linkage region between keratan sulfate and the core protein on proteoglycans from monkey cornea, J Biol Chem 258, 6056–63 (1983).

    PubMed  Google Scholar 

  22. Funderburgh JL, Keratan sulfate: Structure, biosynthesis, and function, Glycobiology 10, 951–8 (2000).

    PubMed  Google Scholar 

  23. Scott JE, Bosworth TR, The comparative chemical morphology of the mammalian cornea, Basic Appl Histochem 34, 35–42 (1990).

    PubMed  Google Scholar 

  24. Ying S, Shiraishi A, Kao CW, Converse RL, Funderburgh JL, Swiergiel J, Roth MR, Conrad GW, Kao WW, Characterization and expression of the mouse lumican gene, J Biol Chem 272, 30306–13 (1997).

    PubMed  Google Scholar 

  25. Hart GW, Biosynthesis of glycosaminolgycans during corneal development, J Biol Chem 251, 6513–21 (1976).

    PubMed  Google Scholar 

  26. Hyldahl L, Aspinall R, Watt FM, Immunolocalization of keratan sulphate in the human embryonic cornea and other human foetal organs, J Cell Sci 80, 181–91 (1986).

    PubMed  Google Scholar 

  27. Cintron C, Covington H, Kublin C, Morphologic analyses of proteoglycans in rabbit corneal scars, Investigative Ophthalmology & Visual Science 31, 1789–98 (1990).

    Google Scholar 

  28. Cintron C, Gregory J, Damle S, Kublin C, Biochemical analyses of proteoglycans in rabbit corneal scars, Investigative Ophthalmology & Visual Science 31, 1975–81 (1990).

    Google Scholar 

  29. Hassell J, Cintron C, Kublin C, Newsome D, Proteoglycan changes during restoration of transparency in corneal scars, Archives Biocchemistry and Biophysics 222, 362–9 (1983).

    Google Scholar 

  30. Akama TO, Nishida K, Nakayama J, Watanabe H, Ozaki K, Nakamura T, Dota A, Kawasaki S, Inoue Y, Maeda N, Yamamoto S, Fujiwara T, Thonar EJ, Shimomura Y, Kinoshita S, Tanigami A, Fukuda MN, Macular corneal dystrophy type I and type II are caused by distinct mutations in a new sulphotransferase gene, Nat Genet 26, 237–41 (2000).

    PubMed  Google Scholar 

  31. Klintworth GK, Meyer R, Dennis R, Hewitt AT, Stock EL, Lenz ME, Hassell JR, Stark WJ Jr, Kuettner KE, Thonar EJ, Macular corneal dystrophy. Lack of keratan sulfate in serum and cornea, Ophthalmic Paediatr Genet 7, 139–43 (1986).

    PubMed  Google Scholar 

  32. Liu NP, Dew-Knight S, Rayner M, Jonasson F, Akama TO, Fukuda MN, Bao W, Gilbert JR, Vance JM, Klintworth GK, Mutations in corneal carbohydrate sulfotransferase 6 gene (CHST6) cause macular corneal dystrophy in Iceland, Mol Vis 6, 261–4 (2000).

    PubMed  Google Scholar 

  33. Quantock A, Fullwood N, Thonar E, Waltman S, Capel M, Ito M, Verity S, Schanzlin D, Macular corneal dystrophy type II: Multiple studies on a cornea with low levels of sulphated keratan sulphate, Eye 11, 57–60 (1997).

    PubMed  Google Scholar 

  34. Thonar EJ, Meyer RF, Dennis RF, Lenz ME, Maldonado B, Hassell JR, Hewitt AT, Stark WJ Jr, Stock EL, Kuettner KE, et al., Absence of normal keratan sulfate in the blood of patients with macular corneal dystrophy, Am J Ophthalmol 102, 561–9 (1986).

    PubMed  Google Scholar 

  35. Vance J, Jonasson F, Lennon F, Sarrica J, Damji K, Stauffer J, Pericak-Vance M, Klintworth G, Linkage of a gene for macular corneal dystrophy to chromosome 16,AmJHumGenet 58, 757–62 (1996).

    Google Scholar 

  36. Ohmori J, Nawa Y, Yang DH, Tsuyama S, Murata F, Keratan sulfate glycosaminoglycans in murine eosinophil-specific granules, J Histochem Cytochem 47, 481–8 (1999).

    PubMed  Google Scholar 

  37. Cornuet P, Blochberger T, Hassell J, Molecular polymorphisms of lumican during corneal development, Investigative Ophthalmology and Visual Science 35, 870–6 (1994).

    PubMed  Google Scholar 

  38. Funderburgh J, Funderburgh M, Mann M, Conrad G, Arterial lumican, J Biol Chem 266, 24773–7 (1991).

    PubMed  Google Scholar 

  39. Wilda M, Bachner D, Just W, Geerkens C, Kraus P, Vogel W, Hameister H, A comparison of the expression pattern of five genes of the family of small leucine-rich proteoglycans during mouse development, J Bone Miner Res 15, 2187–96 (2000).

    PubMed  Google Scholar 

  40. Chakravarti S, Petroll W, Hassell J, Jester J, Lass J, Paul J, Birk D, Corneal opacity in lumican-null mice: Defects in collagen fibril structure and packing in the posterior stroma, Invest Ophthalmol Vis Sci 41, 3365–73 (2000).

    PubMed  Google Scholar 

  41. Funderburgh J, Conrad G, Isoforms of corneal keratan sulfate proteoglycan, J Biol Chem 265, 8297–303 (1990).

    PubMed  Google Scholar 

  42. Ezura Y, Chakravarti S, Oldberg A, Chervoneva I, Birk DE, Differential expression of lumican and fibromodulin regulate collagen fibrillogenesis in developing mouse tendons, J Cell Biol 151, 779–88 (2000).

    PubMed  Google Scholar 

  43. Vogel K, Trotter J, The effect of proteoglycans on the morphology of collagen fibrils formed in vitro, Collagen Rel Res 7, 105–14 (1987).

    Google Scholar 

  44. Quantock AJ, Meek KM, Chakravarti S, An x-ray diffraction investigation of corneal structure in lumican-deficient mice, Invest Ophthalmol Vis Sci 42, 1750–6 (2001).

    PubMed  Google Scholar 

  45. Maurice DM, The structure and transparency of the cornea, J Physiology 136, 263–86 (1957).

    Google Scholar 

  46. McCally R, Farrell R, Interaction of light and the cornea: Light scattering versus transparency. In The Cornea. Transactions of the World Congress on the Cornea III, edited by Cavanagh H (Raven Press, New York, 1987), pp. 165–79.

    Google Scholar 

  47. Svensson L, Aszodi A, Reinholt FP, Fassler R, Heinegard D, Oldberg A, Fibromodulin-null mice have abnormal collagen fibrils, tissue organization, and altered lumican deposition in tendon, J Biol Chem 274, 9636–47 (1999).

    PubMed  Google Scholar 

  48. Jepsen K, Wu F, Peragallo J, Paul J, Roberts L, Ezura Y, Oldberg A, Birk D, Chakravarti S, Asyndrome of joint laxity and impaired tendon integrity in lumican-and fibromodulin-deficient mice, J Biol Chem 277, 35532–40 (2002).

    PubMed  Google Scholar 

  49. Cribb AM, Scott JE, Tendon response to tensile stress: An ultrastructural investigation of collagen: Proteoglycan interactions in stressed tendon, J Anat 187, 423–8 (1995).

    PubMed  Google Scholar 

  50. Perrimon N, Bernfield M, Cellular functions of proteoglycans- An overview, Semin Cell Dev Biol 12, 65–7 (2001).

    PubMed  Google Scholar 

  51. Chakravarti S, Paul J, Roberts L, Chervoneva I, Oldberg A, Birk DE, Invest Ophthalmol Vis Sci 44, 2422–32 (2003).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shukti Chakravarti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakravarti, S. Functions of lumican and fibromodulin: Lessons from knockout mice. Glycoconj J 19, 287–293 (2002). https://doi.org/10.1023/A:1025348417078

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025348417078

Navigation