Skip to main content
Log in

The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The cytoplasmic membrane of bacteria and archaea determine to a large extent the composition of the cytoplasm. Since the ion and in particular the proton and/or the sodium ion electrochemical gradients across the membranes are crucial for the bioenergetic conditions of these microorganisms, strategies are needed to restrict the permeation of these ions across their cytoplasmic membrane. The proton and sodium permeabilities of all biological membranes increase with the temperature. Psychrophilic and mesophilic bacteria, and mesophilic, (hyper)thermophilic and halophilic archaea are capable of adjusting the lipid composition of their membranes in such a way that the proton permeability at the respective growth temperature remains low and constant (homeo-proton permeability). Thermophilic bacteria, however, have more difficulties to restrict the proton permeation across their membrane at high temperatures and these organisms have to rely on the less permeable sodium ions for maintaining a high sodium-motive force for driving their energy requiring membrane-bound processes. Transport of solutes across the bacterial and archaeal membrane is mainly catalyzed by primary ATP driven transport systems or by proton or sodium motive force driven secondary transport systems. Unlike most bacteria, hyperthermophilic bacteria and archaea prefer primary ATP-driven uptake systems for their carbon and energy sources. Several high-affinity ABC transporters for sugars from hyperthermophiles have been identified and characterized. The activities of these ABC transporters allow these organisms to thrive in their nutrient-poor environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Albers S-V, Elferink MG, Charlebois RL, Sensen CW, Driessen AJ & Konings WN (1999) Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein. J. Bacteriol. 181: 4285–4291.

    PubMed  CAS  Google Scholar 

  • Beveridge TJ, Choquet CG, Patel GB & Sprott GD (1993) Freeze-fracture planes of methanogen membranes correlate with the content of tetraether lipids. J. Bacteriol. 175: 1191–1197.

    PubMed  CAS  Google Scholar 

  • Boekema EJ, van Breemen JF, Brisson A, Ubbink-Kok T, Konings WN & Lolkema JS (1999) Connecting stalks in V-type ATPase. Nature 401: 37–38.

    Article  PubMed  CAS  Google Scholar 

  • Booth IR (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 359: 378.

    Google Scholar 

  • Choquet CG, Patel GB, Beveridge TJ & Sprott GD (1992) Formation of unilamellar liposomes from total polar lipid extracts of methanogens. Appl. Environ. Microbiol. 58: 2894–2900.

    PubMed  CAS  Google Scholar 

  • De Rosa M & Gambacorta A (1988) The lipids of archaebacteria. Prog. Lipid Res. 27: 153–175.

    Article  PubMed  CAS  Google Scholar 

  • De Rosa M, Trincone A, Nicolaus B & Gambacorta A (1991) Archaebacteria: lipids, membrane structures, and adaptations to environmental stresses. In: di Prisco G. (Ed) Life Under Extreme Conditions (pp 61–87) Springer-Verlag, Berlin Heidelberg.

    Google Scholar 

  • De Vrij W, Bulthuis RA & Konings WN (1988) Comparative study of energy-transducing properties of cytoplasmic membranes from mesophilic and thermophilic Bacillus species. J. Bacteriol. 170: 2359–2366.

    PubMed  CAS  Google Scholar 

  • Elferink MGL, Albers S-V, Konings WN & Driessen AJM (2001) Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters. Mol. Microbiol. 39: 1494–1503.

    Article  PubMed  CAS  Google Scholar 

  • Elferink MGL, DeWit JG, Demel R, Driessen AJM & Konings WN (1992) Functional reconstitution of membrane proteins in monolayer liposomes from bipolar lipids of Sulfolobus acidocaldarius. J. Biol. Chem. 267: 1375–1381.

    PubMed  CAS  Google Scholar 

  • Esser AF & Souza KA (1974) Correlation between thermal death and membrane fluidity in Bacillus stearothermophilus. Proc. Natl. Acad. Sci. USA 71: 4111–4115.

    Article  PubMed  CAS  Google Scholar 

  • Evdokimov AG, Anderson DE, Routzahn K & Waugh DS (2001) Structural basis for oligosaccharide recognition by Pyrococcus furiosus maltodextrin-binding protein. J. Mol. Biol. 305: 891–904.

    Article  PubMed  CAS  Google Scholar 

  • Gaughran ERL (1947) The saturation of bacterial lipids as a function of temperature. J. Bacteriol. 53: 506.

    CAS  PubMed  Google Scholar 

  • Gliozzi A, Rolandi R, De Rosa M & Gambacorta A (1983) Monolayer black membranes from bipolar lipids of archaebacteria and their temperature-induced structural changes. J. Membrane Biol. 75: 45–56.

    Article  CAS  Google Scholar 

  • Greene RV & MacDonald RE (1984) Partial purification and reconstitution of the aspartate transport system from Halobacterium halobium. Arch. Biochem. Biophys. 229: 576–584.

    Article  PubMed  CAS  Google Scholar 

  • Horlacher R, Xavier KB, Santos H, DiRuggiero J, Kossmann M & Boos W (1998) Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis. J. Bacteriol. 180: 680–689.

    PubMed  CAS  Google Scholar 

  • Hülsmann A, Lurz R, Scheffel F & Schneider E (2000) Maltose and Maltodextrin transport in the thermoacidophilic Gram-positive bacterium Alicyclobacillus acidocaldarius is mediated by a high-affinity transport system that includes a maltose binding protein tolerant to low pH. J. Bacteriol. 182: 6292–6301.

    Article  PubMed  Google Scholar 

  • Jones CR, Ray M, Dawson KA & Strobel HJ (2000) High-affinity maltose binding and transport by the thermophilic anaerobe Thermoanaerobacter ethanolicus 39E. Appl. Environ. Microbiol. 66: 995–1000.

    Article  PubMed  CAS  Google Scholar 

  • Kamo N, Wakamatsu Y, Kohno K & Kobatake Y (1988) On the glutamate transport through cell envelope vesicles of Halobacterium halobium. Biochem. Biophys. Res. Commun. 152: 1090–1096.

    Article  PubMed  CAS  Google Scholar 

  • Kates M (1996) Structural analysis of phospholipids and glycolipids in extremely halophilic archaebacteria. J. Microbiol. Meth. 25: 113–128.

    Article  CAS  Google Scholar 

  • Kates M, Moldoveanu N & Stewart LC (1993) On the revised structure of the major phospholipid of Halobacterium salinarium. Biochim. Biophys. Acta 1169: 46–53.

    PubMed  CAS  Google Scholar 

  • Koning SM, Elferink MGL, Konings WN & Driessen AJM (2001) Cellobiose uptake in the hyperthermophilic archaeon Pyrococcus furious is mediated by an inducible, high-affinity ABC transporter. J. Bacteriol. 183: 4979–4984.

    Article  PubMed  CAS  Google Scholar 

  • Koga Y, Nishihara M, Morii H & Akagawa-Matsushita M (1993) Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosynthesis. Microbiol. Rev. 57: 164–182.

    PubMed  CAS  Google Scholar 

  • Krueger RD, Harper SH, Campbell JW & Fahrney DE (1986) Kinetics of phosphate uptake, growth, and accumulation of cyclic diphosphoglycerate in a phosphate-limited continuous culture of Methanobacterium thermoautotrophicum. J. Bacteriol. 167: 49–56.

    PubMed  CAS  Google Scholar 

  • Krulwich TA, Davidson, LF, Filip SJJr, Zuckerman RS & Guffanti AA (1978) The proton motive force and beta-galactoside transport in Bacillus acidocaldarius. J. Biol. Chem. 253: 4599–4603.

    PubMed  CAS  Google Scholar 

  • Langworthy TA (1982) Lipids of Thermoplasma. Methods Enzymol. 88: 396–406.

    CAS  Google Scholar 

  • Lolkema JS, Speelmans G & Konings WN (1994) Na+-coupled versus H+-coupled energy transduction in bacteria. Biochim. Biophys. Acta 1187: 211–215.

    Article  PubMed  CAS  Google Scholar 

  • Melchior DL (1982) Lipid phase transitions and regulation of membrane fluidity in prokaryotes. Curr. Top. Membr. Transp. 17: 263–316.

    Article  CAS  Google Scholar 

  • Nelson KE, Clayton RA, Gill SR, Gwinn ML, Dodson RJ, Haft DH, Hickey EK, Peterson JD, Nelson WC, Ketchum KA, McDonald L, Utterback TR, Malek JA, Linher KD, Garrett Mm, Stewart AM, Cotton MD, Pratt MS, Philips CA, Richardson D, Heidelberg J, Sutton GG, Fleischmann RD, Eisen JA & Freiser CM (1999) Evidence for lateral gene transfer between archaea and bacteria from the genome sequence of Thermotoga maritima. Nature 399: 323–329.

    Article  PubMed  CAS  Google Scholar 

  • Patel BKC, Monk C, Littleworth H, Morgan HW & Daniel RM (1987) Clostridium fervidus sp. nov., a new chemoorganotrophic acetogenic thermophile. Int. J. Syst. Bacteriol. 37: 123–126.

    Article  CAS  Google Scholar 

  • Peddie CJ, Cook GM & Morgan HW (2000) Sucrose transport by the alkaliphilic, thermophilic Bacillus sp. Strain TA2.A1 is dependent on a sodium gradient. Extremophiles 4: 291–296.

    Article  PubMed  CAS  Google Scholar 

  • Peddie CJ, Cook GM & Morgan HW (1999) Sodium-dependent glutamate uptake by an alkaliphilic, thermophilic Bacillus sp. Strain TA2.A1. J. Bacteriol. 181: 3172–3177.

    PubMed  CAS  Google Scholar 

  • Prado A, Da Costa MS & Madeira VMC (1988) Effect of growth temperature on the lipid composition of two strains of Thermus sp. J. Gen. Microbiol. 134: 1653–1660.

    CAS  Google Scholar 

  • Prowe SG, Van de Vossenberg JLCM, Driessen AJM, Antranikian G & Konings WN (1996) Sodium-coupled energy transduction in the newly isolated thermoalkaliphilic strain LBS3. J. Bacteriol. 178: 4099–4104.

    PubMed  CAS  Google Scholar 

  • Prüschenk R & Baumeister W (1987) Three-dimensional structure of the surface protein of Sulfolobus solfataricus. Eur. J. Cell Biol. 45: 185–191.

    Google Scholar 

  • Ramirez S, Moreno R, Zafra O, Castan P, Valles C & Berenguer J (2000) Two nitrate/nitrite transporters are encoded within the mobilizable plasmid for nitrate respiration of Thermus thermophilus HB8. J. Bacteriol. 182: 2179–83.

    Article  PubMed  CAS  Google Scholar 

  • Reizer J, Grossowicz N & Barenholz Y (1985) The effect of growth temperature on the thermotropic behavior of the membranes of a thermophilic Bacillus. Composition-structure-function relationships. Biochim. Biophys. Acta 815: 268–280.

    Article  PubMed  CAS  Google Scholar 

  • Russell NJ & Fukunaga N (1990) A comparison of thermal adaptation of membrane lipids in psychrophilic and thermophilic bacteria. FEMS Microbiol. Rev. 75: 171–182.

    Article  CAS  Google Scholar 

  • Schafer G, Engelhard M & Muller V (1999) Bioenergetics of the Archaea. Microbiol. Mol. Biol. Rev. 63: 570–620.

    PubMed  CAS  Google Scholar 

  • Schleper C, Puehler G, Holz I, Gambacorta A, Janekoviv D, Santarius U, Klenk H-P & Zillig W (1995) Picrophilus gen.nov., fam.nov.: a novel aerobic, heterotrophic, thermoacidophilic genus and family comprising archaea capable of growth around pH 0. J. Bacteriol. 177: 7050–7059.

    PubMed  CAS  Google Scholar 

  • Speelmans G, De Vrij W & Konings WN (1989) Characterization ofamino acid transport in membrane vesicles from the thermophilic fermentative bacterium Clostridium fervidus. J. Bacteriol. 171: 3788–3795.

    PubMed  CAS  Google Scholar 

  • Speelmans G, Poolman B, Abee T & Konings WN (1993a) Energy transduction in the thermophilic anaerobic bacterium Clostridium fervidus is exclusively coupled to sodium ions. Proc. Natl. Acad. Sci. USA 90: 7975–7979.

    Article  PubMed  CAS  Google Scholar 

  • Speelmans G, Poolman B & Konings WN (1993b) Amino acid transport in the thermophilic anaerobe Clostridium fervidus is driven by an electrochemical sodium gradient. J. Bacteriol. 175: 2060–2066.

    PubMed  CAS  Google Scholar 

  • Sprott GD, Meloche M & Richards JC (1991) Proportions of diether, macrocyclic diether, and tetraether lipids in Methanococcus jannaschii grown at different temperatures. J. Bacteriol. 173: 3907–3910.

    PubMed  CAS  Google Scholar 

  • Stern J, Freisleben H-J, Janku S & Ring K (1992) Black lipid membranes of tetraether lipids from Thermoplasma acidophilum. Biochim. Biophys. Acta 1128: 227–236.

    PubMed  CAS  Google Scholar 

  • Svobodová J & Svoboda P (1988) Membrane fluidity in Bacillus subtilis. Physical change and biological adaptation. Folia Microbiol. (Praha) 33: 161–169.

    Article  Google Scholar 

  • Tawara E & Kamo N (1991) Glucose transport of Haloferax volcanii requires the Na(+)-electrochemical potential gradient and inhibitors for the mammalian glucose transporter inhibit the transport. Biochim. Biophys. Acta 1070: 293–299.

    Article  PubMed  CAS  Google Scholar 

  • Thompson DH, Wong KF, Humphry-Baker R, Wheeler JJ, Kim JM & Rananavare SB (1992) Tetraether bolaform amphiphiles as models of archaebacterial membrane lipids: Raman spectoscopy, 31P NMR, X-ray scattering, and electron microscopy. J. Am. Chem. Soc. 114: 9035–9042.

    Article  CAS  Google Scholar 

  • Upasani VN, Desai SG, Moldoveanu N & Kates M (1994) Lipids of extremely halophilic archaeobacteria from saline environments in India: A novel glycolipid in Natronobacterium strains. Microbiology 140: 1959–1966.

    Article  PubMed  CAS  Google Scholar 

  • Van de Vossenberg JLCM, Driessen AJM, Da Costa MS & Konings WN (1999a) Homeostasis of the membrane proton permeability in Bacillus subtilis grown at different temperatures. Biochim. Biophys. Acta 1419: 97–104.

    Article  PubMed  CAS  Google Scholar 

  • Van de Vossenberg JLCM, Driessen AJM, Grant WD & Konings WN (1999b) Lipid membranes from halophilic and alkalihalophilic archaea have a low H+ and Na+ permeability at high salt concentration. Extremophiles 3: 253–257.

    Article  PubMed  CAS  Google Scholar 

  • Van de Vossenberg JLCM, Ubbink-Kok T, Elferink MGL, Driessen AJM & Konings WN (1995) Ion permeability of the cytoplasmic membrane limits the maximum growth temperature of bacteria and archaea. Mol. Microbiol. 18: 925–932.

    Article  PubMed  CAS  Google Scholar 

  • Wanner C & Soppa J (1999) Genetic identification of three ABC transporters as essential elements for nitrate respiration in Haloferax volcanii. Genetics 152: 1417–1428.

    PubMed  CAS  Google Scholar 

  • Wassenberg D, Liebl W & Jaenicke R (2000) Maltose-binding protein from the hyperthermophilic bacterium Thermotoga maritima: stability and binding properties. J. Mol. Biol. 295: 279–288.

    Article  PubMed  CAS  Google Scholar 

  • Xavier KB, Martins LO, Peist R, Kossmann M, Boos W & Santos H (1996) High-affinity maltose/trehalose transport system in the hyperthermophilic Archaeon Thermococcus litoralis. J. Bacteriol. 178: 4773–4777.

    PubMed  CAS  Google Scholar 

  • Yamauchi K & Kinoshita M (1995) Highly stable lipid membranes from archaebacterial extremophiles. Prog. Polym. Sci. 18: 763–804.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Konings, W.N., Albers, SV., Koning, S. et al. The cell membrane plays a crucial role in survival of bacteria and archaea in extreme environments. Antonie Van Leeuwenhoek 81, 61–72 (2002). https://doi.org/10.1023/A:1020573408652

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1020573408652

Navigation