Skip to main content
Log in

Regulation of Apoptosis in Prostate Cancer

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Transformation and malignant progression of prostate cancer is regulated by the inability of prostatic epithelial cells to undergo apoptosis rather than by increased cell proliferation. The basic apoptotic machinery of most prostate cancer cells is intact and the inability to undergo apoptosis is due to molecular alterations that result in failure to initiate or execute apoptotic pathways. This review discusses the role of anti-apoptotic proteins such as Bcl-2/BclXL, NF-κB, IGF, caveolin, and Akt, and pro-apoptotic molecules such as PTEN, p53, Bin1, TGF-β, and Par-4 that can regulate progression of prostate cancer. In addition to highlighting the salient features of these molecules and their relevance in apoptosis, this review provides an appraisal of their therapeutic potential in prostate cancer. Molecular targeting of these proteins and/or their innate pro- or anti-apoptotic pathways, either singly or in combination, may be explored in conjunction with conventional and currently available experimental strategies for the treatment of both hormone-sensitive and hormone-resistant prostate cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Evan GI, Vousden KH: Proliferation, cell cycle and apoptosis in cancer. Nature 411: 342–348, 2001

    Google Scholar 

  2. Tu H, Jacobs SC, Borkowski A, Kyprianou N: Incidence of apoptosis and cell proliferation in prostate cancer: Relationship with TGF-beta1 and bcl-2 expression. Int J Cancer 69: 357–363, 1996

    Google Scholar 

  3. Denmeade SR, Lin XS, Isaacs JT: Role of programmed (apoptotic) cell death during the progression and therapy for prostate cancer. Prostate 28: 251–265, 1996

    Google Scholar 

  4. Lu-Yao GL, McLerran D, Wasson J, Wennberg JE: An assessment of radical prostatectomy. Time trends, geographic variation, and outcomes. The Prostate Patient Outcomes Research Team. JAMA 269: 2633–2636, 1993

    Google Scholar 

  5. Small EJ, Reese DM, Vogelzang NJ: Hormone-refractory prostate cancer: An evolving standard of care. Semin Oncol 26: 61–67, 1999

    Google Scholar 

  6. Isaacs JT, Lundmo PI, Berges R, Martikainen P, Kyprianou N, English HF: Androgen regulation of programmed death of normal and malignant prostatic cells. J Androl 13: 457–464, 1992

    Google Scholar 

  7. Huang A, Gandour-Edwards R, Rosenthal SA, Siders DB, Deitch AD, White RW: p53 and bcl-2 immunohistochemical alterations in prostate cancer treated with radiation therapy. Urology 51: 346–351, 1998

    Google Scholar 

  8. Denmeade SR, Isaacs JT: Activation of programmed (apoptotic) cell death for the treatment of prostate cancer. Adv Pharmacol 35: 281–306, 1996

    Google Scholar 

  9. Denmeade SR, Tombal B, Isaacs JT: Apoptotic pathways in prostate cancer. In: Mattson MP, Estus S, Rangnekar VM (eds) Programmed Cell Death, Volume II: Advances in Cell Aging and Gerontology, Vol 6, Elsevier B.V., Amsterdam, Netherlands, 2001, pp 23–54

    Google Scholar 

  10. Hengartner MO: The biochemistry of apoptosis. Nature 407: 770–776, 2000

    Google Scholar 

  11. Leist M, Jaattela M: Four deaths and a funeral: From caspases to alternative mechanisms. Nat Rev Mol Cell Biol 2: 589–598, 2001

    Google Scholar 

  12. Thornberry NA, Lazebnik Y: Caspases: Enemies within. Science 281: 1312–1316, 1998

    Google Scholar 

  13. Henson PM, Bratton DL, Fadok VA: The phosphatidylserine receptor:Acrucial molecular switch? Nat Rev Mol Cell Biol 2: 627–633, 2001

    Google Scholar 

  14. Rokhlin OW, Bishop GA, Hostager BS, Waldschmidt TJ, Sidorenko SP, Pavloff N, Kiefer MC, Umansky SR, Glover RA, Cohen MB: Fas-mediated apoptosis in human prostatic carcinoma cell lines. Cancer Res 57: 1758–1768, 1997

  15. Chakraborty M, Qiu SG, Vasudevan KM, Rangnekar VM: Par-4 drives trafficking and activation of Fas and FasL to induce prostate cancer cell apoptosis and tumor regression. Cancer Res 61: 7255–7263, 2001

    Google Scholar 

  16. Furuya Y, Lundmo P, Short AD, Gill DL, Isaacs JT: The role of calcium, pH, and cell proliferation in the programmed (apoptotic) death of androgen-independent prostatic cancer cells induced by thapsigargin. Cancer Res 54: 6167–6175, 1994

    Google Scholar 

  17. Martikainen P, Kyprianou N, Tucker R, Isaacs JT: Programmed death of nonproliferating androgen-independent prostatic cancer cells. Cancer Res 51: 4693–4700, 1991

    Google Scholar 

  18. Wertz IE, Dixit VM: Characterization of calcium releaseactivated apoptosis of LNCaP prostate cancer cells. J Biol Chem 275: 11470–11477, 2000

    Google Scholar 

  19. Lin XS, Denmeade SR, Cisek L, Isaacs JT: Mechanism and role of growth arrest in programmed (apoptotic) death of prostatic cancer cells induced by thapsigargin. Prostate 33: 201–207, 1997

    Google Scholar 

  20. Sells SF, Wood DP Jr, Joshi-Barve SS, Muthukumar S, Jacob RJ, Crist SA, Humphreys S, Rangnekar VM: Commonality of the gene programs induced by effectors of apoptosis in androgen-dependent and-independent prostate cells. Cell Growth Differ 5: 457–466, 1994

    Google Scholar 

  21. Wyllie AH: Glucocorticoid-induced thymocyte apoptosis is associated with endogenous endonuclease activation. Nature 284: 555–556, 1980

    Google Scholar 

  22. McConkey DJ, Orrenius S: The role of calcium in the regulation of apoptosis. Biochem Biophys Res Commun 239: 357–366, 1997

    Google Scholar 

  23. Juin P, Pelletier M, Oliver L, Tremblais K, Gregoire M, Meflah K, Vallette FM: Induction of a caspase-3–like activity by calcium in normal cytosolic extracts triggers nuclear apoptosis in a cell-free system. J Biol Chem 273: 17559–17564, 1998

    Google Scholar 

  24. Gross A, McDonnell JM, Korsmeyer SJ: BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13: 1899–1911, 1999

    Google Scholar 

  25. Yin XM, Oltvai ZN, Korsmeyer SJ: BH1 and BH2 domains of Bcl-2 are required for inhibition of apoptosis and heterodimerization with Bax. Nature 369: 321–323, 1994

    Google Scholar 

  26. Hanada M, Aime-Sempe C, Sato T, Reed JC: Structurefunction analysis of Bcl-2 protein. Identification of conserved domains important for homodimerization with Bcl-2 and heterodimerization with Bax. J Biol Chem 270:1 1962–11969, 1995

    Google Scholar 

  27. Yang E, Zha J, Jockel J, Boise LH, Thompson CB, Korsmeyer SJ: Bad, a heterodimeric partner for Bcl-XL and Bcl-2, displaces Bax and promotes cell death. Cell 80: 285–291, 1995

    Google Scholar 

  28. Knudson CM, Korsmeyer SJ: Bcl-2 and Bax function independently to regulate cell death. Nat Genet 16: 358–363, 1997

    Google Scholar 

  29. Reed JC, Cuddy M, Slabiak T, Croce CM, Nowell PC: Oncogenic potential of bcl-2 demonstrated by gene transfer. Nature 336: 259–261, 1988

    Google Scholar 

  30. Lebedeva I, Rando R, Ojwang J, Cossum P, Stein CA: Bcl-xL in prostate cancer cells: Effects of overexpression and down-regulation on chemosensitivity. Cancer Res 60: 6052–6060, 2000

    Google Scholar 

  31. Krajewski S, Tanaka S, Takayama S, Schibler MJ, Fenton W, Reed JC: Investigation of the subcellular distribution of the bcl-2 oncoprotein: Residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res 53: 4701–4714, 1993

    Google Scholar 

  32. Vander Heiden MG, Chandel NS, Williamson EK, Schumacker PT, Thompson CB: BclXL regulates the membrane potential and volume homeostasis of mitochondria. Cell 91: 627–637, 1997

    Google Scholar 

  33. Kim CN, Wang X, Huang Y, Ibrado AM, Liu L, Fang G, Bhalla K: Overexpression of Bcl-XL inhibits Ara-C-induced mitochondrial loss of cytochromeCand other perturbations that activate the molecular cascade of apoptosis. Cancer Res 57: 3115–3120, 1997

    Google Scholar 

  34. Kluck RM, Bossy-Wetzel E, Green DR, Newmeyer DD: The release of cytochrome C from mitochondria: A primary site for Bcl-2 regulation of apoptosis. Science 275: 1132–1136, 1997

    Google Scholar 

  35. Yang J, Liu X, Bhalla K, Kim CN, Ibrado AM, Cai J, Peng TI, Jones DP, Wang X: Prevention of apoptosis by Bcl-2: Release of cytochrome C from mitochondria blocked. Science 275: 1129–1132, 1997

    Google Scholar 

  36. Minn AJ, Kettlun CS, Liang H, Kelekar A, Vander Heiden MG, Chang BS, Fesik SW, Fill M, Thompson CB: Bcl-XLregulates apoptosis by heterodimerizationdependent and-independent mechanisms. EMBO J 18: 632–643, 1999

    Google Scholar 

  37. Li F, Srinivasan A, Wang Y, Armstrong RC, Tomaselli KJ, Fritz LC: Cell-specific induction of apoptosis by microinjection of cytochrome C. Bcl-XL has activity independent of cytochrome C release. J Biol Chem 272: 30299–30305, 1997

    Google Scholar 

  38. Ibrado AM, Huang Y, Fang G, Liu L, Bhalla K: Overexpression of Bcl-2 or Bcl-XL inhibits Ara-C-induced CPP32/Yama protease activity and apoptosis of human acute myelogenous leukemia HL-60 cells. Cancer Res 56: 4743–4748, 1996

    Google Scholar 

  39. Marin MC, Fernandez A, Bick RJ, Brisbay S, Buja LM, Snuggs M, McConkey DJ, von Eschenbach AC, Keating MJ, McDonnell TJ: Apoptosis suppression by bcl-2 is correlated with the regulation of nuclear and cytosolic Ca2+. Oncogene 12: 2259–2266, 1996

    Google Scholar 

  40. Bruckheimer EM, Gjertsen BT, McDonnell TJ: Implications of cell death regulation in the pathogenesis and treatment of prostate cancer. Semin Oncol 26: 382–398, 1999

    Google Scholar 

  41. McDonnell TJ, Troncoso P, Brisbay SM, Logothetis C, Chung LW, Hsieh JT, Tu SM, Campbell ML: Expression of the protooncogene bcl-2 in the prostate and its association with emergence of androgen-independent prostate cancer. Cancer Res 52: 6940–6944, 1992

    Google Scholar 

  42. McDonnell TJ, Navone NM, Troncoso P, Pisters LL, Conti C, von Eschenbach AC, Brisbay S, Logothetis CJ: Expression of bcl-2 oncoprotein and p53 protein accumulation in bone marrow metastases of androgen independent prostate cancer. J Urol 157: 569–574, 1997

    Google Scholar 

  43. Raffo AJ, Perlman H, Chen MW, Day ML, Streitman JS, Buttyan R: Overexpression of bcl-2 protects prostate cancer cells from apoptosis in vitro and confers resistance to androgen depletion in vivo. Cancer Res 55: 4438–4445, 1995

    Google Scholar 

  44. Furuya Y, Krajewski S, Epstein JI, Reed JC, Isaacs JT: Expression of bcl-2 and the progression of human and rodent prostatic cancers. Clin Cancer Res 2: 389–398, 1996

    Google Scholar 

  45. Rokhlin OW, Guseva N, Tagiyev A, Knudson CM, Cohen MB: Bcl-2 oncoprotein protects the human prostatic carcinoma cell line PC3 from TRAIL-mediated apoptosis. Oncogene 20: 2836–2843, 2001

    Google Scholar 

  46. Marcelli M, Marani M, Li X, Sturgis L, Haidacher SJ, Trial JA, Mannucci R, Nicoletti I, Denner L: Heterogeneous apoptotic responses of prostate cancer cell lines identify an association between sensitivity to staurosporine-induced apoptosis, expression of Bcl-2 family members, and caspase activation. Prostate 42: 260–273, 2000

    Google Scholar 

  47. Li X, Marani M, Mannucci R, Kinsey B, Andriani F, Nicoletti I, Denner L, Marcelli M: Overexpression of Bcl-XL underlies the molecular basis for resistance to staurosporine-induced apoptosis in PC-3 cells. Cancer Res 61: 1699–1706, 2001

    Google Scholar 

  48. Blagosklonny MV, Giannakakou P, el-Deiry WS, Kingston DG, Higgs PI, Neckers L, Fojo T: Raf-1/bcl-2 phosphorylation: A step from microtubule damage to cell death. Cancer Res 57: 130–135, 1997

    Google Scholar 

  49. Mayo MW, Baldwin AS: The transcription factor NF-êB: Control of oncogenesis and cancer therapy resistance. Biochim Biophys Acta 1470: M55–M62, 2000

    Google Scholar 

  50. Huang S, Pettaway CA, Uehara H, Bucana CD, Fidler IJ: Blockade of NF-êB activity in human prostate cancer cells is associated with suppression of angiogenesis, invasion, and metastasis. Oncogene 20: 4188–4197, 2001

    Google Scholar 

  51. Palayoor ST, Youmell MY, Calderwood SK, Coleman CN, Price BD: Constitutive activation of IêB kinase alpha and NF-êB in prostate cancer cells is inhibited by ibuprofen. Oncogene 18: 7389–7394, 1999

    Google Scholar 

  52. Rayet B, Gelinas C: Aberrant rel/NF-êB genes and activity in human cancer. Oncogene 18: 6938–6947, 1999

    Google Scholar 

  53. Beg AA, Sha WC, Bronson RT, Baltimore D: Constitutive NF-êB activation, enhanced granulopoiesis, and neonatal lethality in I kappa B alpha-deficient mice. Genes Dev 9: 2736–2746, 1995

    Google Scholar 

  54. Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS Jr: NF-êB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 281: 1680–1683, 1998

    Google Scholar 

  55. Webster GA, Perkins ND: Transcriptional cross talk between NF-êB and p53. Mol Cell Biol 19: 3485–3495, 1999

    Google Scholar 

  56. Keller ET, Chang C, Ershler WB: Inhibition of NFêB activity through maintenance of IkappaBalpha levels contributes to dihydrotestosterone-mediated repression of the interleukin-6 promoter. J Biol Chem 271: 26267–26275, 1996

    Google Scholar 

  57. Rokhlin OW, Gudkov AV, Kwek S, Glover RA, Gewies AS, Cohen MB: p53 is involved in tumor necrosis factor-alphainduced apoptosis in the human prostatic carcinoma cell line LNCaP. Oncogene 19: 1959–1968, 2000

    Google Scholar 

  58. Sumitomo M, Tachibana M, Nakashima J, Murai M, Miyajima A, Kimura F, Hayakawa M, Nakamura H: An essential role for nuclear factor kappaB in preventing TNFalpha-induced cell death in prostate cancer cells. J Urol 161: 674–679, 1999

    Google Scholar 

  59. Das KC, White CW: Activation of NF-êB by antineoplastic agents. Role of protein kinase C. J Biol Chem 272: 14914–14920, 1997

    Google Scholar 

  60. Lindholm PF, Bub J, Kaul S, Shidham VB, Kajdacsy-Balla A: The role of constitutive NF-êB activity in PC-3 human prostate cancer cell invasive behavior. Clin Exp Metastasis 18: 471–479, 2000

    Google Scholar 

  61. Reiss K, Wang JY, Romano G, Furnari FB, Cavenee WK, Morrione A, Tu X, Baserga R: IGF-I receptor signaling in a prostatic cancer cell line with a PTEN mutation. Oncogene 19: 2687–2694, 2000

    Google Scholar 

  62. Baserga R: The contradictions of the insulin-like growth factor 1 receptor. Oncogene 19: 5574–5581, 2000

    Google Scholar 

  63. Peruzzi F, Prisco M, Morrione A, Valentinis B, Baserga R: Anti-apoptotic signaling of the insulin-like growth factor-I receptor through mitochondrial translocation of c-Raf and Nedd4. J Biol Chem 276: 25990–25996, 2001

    Google Scholar 

  64. Reiss K, Valentinis B, Tu X, Xu SQ, Baserga R: Molecular markers of IGF-I-mediated mitogenesis. Exp Cell Res 242: 361–372, 1998

    Google Scholar 

  65. Stattin P, Bylund A, Rinaldi S, Biessy C, Dechaud H, Stenman UH, Egevad L, Riboli E, Hallmans G, Kaaks R: Plasma insulin-like growth factor-I, insulin-like growth factor-binding proteins, and prostate cancer risk: A prospective study. J Natl Cancer Inst 92: 1910–1917, 2000

    Google Scholar 

  66. Chan JM, Stampfer MJ, Giovannucci E, Gann PH, Ma J, Wilkinson P, Hennekens CH, Pollak M: Plasma insulinlike growth factor-I and prostate cancer risk: A prospective study. Science 279: 563–566, 1998

    Google Scholar 

  67. Ludwig T, Eggenschwiler J, Fisher P, D'Ercole AJ, Davenport ML, Efstratiadis A: Mouse mutants lacking the type 2 IGF receptor (IGF2R) are rescued from perinatal lethality in Igf2 and Igf1r null backgrounds. Dev Biol 177: 517–535, 1996

    Google Scholar 

  68. Baserga R: The IGF-I receptor in cancer research. Exp Cell Res 253: 1–6, 1999

    Google Scholar 

  69. Smart EJ, Graf GA, McNiven MA, Sessa WC, Engelman JA, Scherer PE, Okamoto T, Lisanti MP: Caveolins, liquid-ordered domains, and signal transduction. Mol Cell Biol 19: 7289–7304, 1999

    Google Scholar 

  70. Shaul PW, Anderson RG: Role of plasmalemmal caveolae in signal transduction. AmJ Physiol 275: L843–L851, 1998

    Google Scholar 

  71. Razani B, Schlegel A, Liu J, Lisanti MP: Caveolin-1, a putative tumour suppressor gene. Biochem Soc Trans 29: 494–499, 2001

    Google Scholar 

  72. Timme TL, Goltsov A, Tahir S, Li L, Wang J, Ren C, Johnston RN, Thompson TC: Caveolin-1 is regulated by c-myc and suppresses c-myc-induced apoptosis. Oncogene 19: 3256–3265, 2000

    Google Scholar 

  73. Yang G, Truong LD, Timme TL, Ren C, Wheeler TM, Park SH, Nasu Y, Bangma CH, Kattan MW, Scardino PT, Thompson TC: Elevated expression of caveol in is associated with prostate and breast cancer. Clin Cancer Res 4: 1873–1880, 1998

    Google Scholar 

  74. Li L, Yang G, Ebara S, Satoh T, Nasu Y, Timme TL, Ren C, Wang J, Tahir SA, Thompson TC: Caveolin-1 mediates testosterone-stimulated survival/clonal growth and promotes metastatic activities in prostate cancer cells. Cancer Res 61: 4386–4392, 2001

    Google Scholar 

  75. Lu ML, Schneider MC, Zheng Y, Zhang X, Richie JP: Caveolin-1 interacts with androgen receptor. A positive modulator of androgen receptor mediated transactivation. J Biol Chem 276: 13442–13451, 2001

    Google Scholar 

  76. Nasu Y, Timme TL, Yang G, Bangma CH, Li L, Ren C, Park SH, DeLeon M, Wang J, Thompson TC: Suppression of caveol in expression induces androgen sensitivity in metastatic androgen-insensitive mouse prostate cancer cells. Nat Med 4: 1062–1064, 1998

    Google Scholar 

  77. Yang CP, Galbiati F, Volonte D, Horwitz SB, Lisanti MP: Upregulation of caveolin-1 and caveolae organelles in Taxol-resistant A549 cells. FEBS Lett 439: 368–372, 1998

    Google Scholar 

  78. Chan TO, Rittenhouse SE, Tsichlis PN: AKT/PKB and other D3 phosphoinositide-regulated kinases: Kinase activation by phosphoinositide-dependent phosphorylation. Annu Rev Biochem 68: 965–1014, 1999

    Google Scholar 

  79. Khwaja A: Akt is more than just a Bad kinase. Nature 401: 33–34, 1999

    Google Scholar 

  80. Zinda MJ, Johnson MA, Paul JD, Horn C, Konicek BW, Lu ZH, Sandusky G, Thomas JE, Neubauer BL, Lai MT, Graff JR: AKT-1,-2, and-3 are expressed in both normal and tumor tissues of the lung, breast, prostate, and colon. Clin Cancer Res 7: 2475–2479, 2001

    Google Scholar 

  81. Lin HK, Yeh S, Kang HY, Chang C: Akt suppresses androgen-induced apoptosis by phosphorylating and inhibiting androgen receptor. Proc Natl Acad Sci USA 98: 7200–7205, 2001

    Google Scholar 

  82. Thakkar H, Chen X, Tyan F, Gim S, Robinson H, Lee C, Pandey SK, Nwokorie C, Onwudiwe N, Srivastava RK: Pro-survival function of akt/protein kinase b in prostate cancer cells. Relationship with trail resistance. J Biol Chem 276: 38361–38369, 2001

    Google Scholar 

  83. Murillo H, Huang H, Schmidt LJ, Smith DI, Tindall DJ: Role of PI3K signaling in survival and progression of LNCaP prostate cancer cells to the androgen refractory state. Endocrinology 142: 4795–4805, 2001

    Google Scholar 

  84. Steck PA, Pershouse MA, Jasser SA, Yung WK, Lin H, Ligon AH, Langford LA, Baumgard ML, Hattier T, Davis T, Frye C, Hu R, Swedlund B, Teng DH, Tavtigian SV: Identification of a candidate tumour suppressor gene, MMAC1, at chromosome 10q23.3 that is mutated in multiple advanced cancers. Nat Genet 15: 356–362, 1997

    Google Scholar 

  85. Davies MA, Koul D, Dhesi H, Berman R, McDonnell TJ, McConkey D, Yung WK, Steck PA: Regulation of Akt/PKB activity, cellular growth, and apoptosis in prostate carcinoma cells byMMAC/PTEN. Cancer Res 59: 2551–2556, 1999

    Google Scholar 

  86. Whang YE, Wu X, Suzuki H, Reiter RE, Tran C, Vessella RL, Said JW, Isaacs WB, Sawyers CL: Inactivation of the tumor suppressor PTEN/MMAC1 in advanced human prostate cancer through loss of expression. Proc Natl Acad Sci USA 95: 5246–5250, 1998

    Google Scholar 

  87. Murakami YS, Albertsen H, Brothman AR, Leach RJ, White RL: Suppression of the malignant phenotype of human prostate cancer cell line PPC-1 by introduction of normal fragments of human chromosome 10. Cancer Res 56: 2157–2160, 1996

    Google Scholar 

  88. Gustin JA, Maehama T, Dixon JE, Donner DB: The PTEN tumor suppressor protein inhibits tumor necrosis factorinduced nuclear factor kappa B activity. J Biol Chem 276: 27740–27744, 2001

    Google Scholar 

  89. Vousden KH: p53: Death star. Cell 103: 691–694, 2000

    Google Scholar 

  90. Ludwig RL, Bates S, Vousden KH: Differential activation of target cellular promoters by p53 mutants with impaired apoptotic function. Mol Cell Biol 16: 4952–4960, 1996

    Google Scholar 

  91. Navone NM, Troncoso P, Pisters LL, Goodrow TL, Palmer JL, Nichols WW, von Eschenbach AC, Conti CJ: p53 protein accumulation and gene mutation in the progression of human prostate carcinoma. J Natl Cancer Inst 85: 1657–1669, 1993

    Google Scholar 

  92. Heidenberg HB, Sesterhenn IA, Gaddipati JP, Weghorst CM, Buzard GS, Moul JW, Srivastava S: Alteration of the tumor suppressor gene p53 in a high fraction of hormone refractory prostate cancer. J Urol 154: 414–421, 1995

    Google Scholar 

  93. Burchardt M, Burchardt T, Shabsigh A, Ghafar M, Chen MW, Anastasiadis A, de la Taille A, Kiss A, Buttyan R: Reduction of wild type p53 function confers a hormone resistant phenotype on LNCaP prostate cancer cells. Prostate 48: 225–230, 2001

    Google Scholar 

  94. Berges RR, Furuya Y, Remington L, English HF, Jacks T, Isaacs JT: Cell proliferation, DNA repair, and p53 function are not required for programmed death of prostatic glandular cells induced by androgen ablation. Proc Natl Acad Sci USA 90: 8910–8914, 1993

    Google Scholar 

  95. Bowen C, Voeller HJ, Kikly K, Gelmann EP: Synthesis of procaspases-3 and-7 during apoptosis in prostate cancer cells. Cell Death Differ 6: 394–401, 1999

    Google Scholar 

  96. Ahmed MM, Sells SF, Venkatasubbarao K, Fruitwala SM, Muthukkumar S, Harp C, Mohiuddin M, Rangnekar VM: Ionizing radiation-inducible apoptosis in the absence of p53 linked to transcription factor EGR-1. J Biol Chem 272: 33056–33061, 1997

    Google Scholar 

  97. Yang A, Kaghad M, Wang Y, Gillett E, Fleming MD, Dotsch V, Andrews NC, Caput D, McKeon F: p63, a p53 homolog at 3q27–29, encodes multiple products with transactivating, death-inducing, and dominant-negative activities. Mol Cell 2: 305–316, 1998

    Google Scholar 

  98. Signoretti S, Waltregny D, Dilks J, Isaac B, Lin D, Garraway L, Yang A, Montironi R, McKeon F, LodaM:p63 is a prostate basal cell marker and is required for prostate development. Am J Pathol 157: 1769–1775, 2000

    Google Scholar 

  99. Parsons JK, Gage WR, Nelson WG, De Marzo AM: p63 protein expression is rare in prostate adenocarcinoma: Implications for cancer diagnosis and carcinogenesis. Urology 58: 619–624, 2001

    Google Scholar 

  100. Jost CA, Marin MC, Kaelin WG Jr: p73 is a human p53–related protein that can induce apoptosis. Nature 389: 191–194, 1997

    Google Scholar 

  101. Yokomizo A, Mai M, Bostwick DG, Tindall DJ, Qian J, Cheng L, Jenkins RB, Smith DI, Liu W: Mutation and expression analysis of the p73 gene in prostate cancer. Prostate 39: 94–100, 1999

    Google Scholar 

  102. Takahashi H, Fukutome K, Watanabe M, Furusato M, Shiraishi T, Ito H, Suzuki H, Ikawa S, Hano H: Mutation analysis of the p51 gene and correlation between p53, p73, and p51 expressions in prostatic carcinoma. Prostate 47: 85–90, 2001

    Google Scholar 

  103. Elliott K, Sakamuro D, Basu A, Du W, Wunner W, Staller P, Gaubatz S, Zhang H, Prochownik E, Eilers M, Prendergast GC: Bin1 functionally interacts with Myc and inhibits cell proliferation via multiple mechanisms. Oncogene 18: 3564–3573, 1999

    Google Scholar 

  104. Sakamuro D, Elliott KJ, Wechsler-Reya R, Prendergast GC: BIN1 is a novel MYC-interacting protein with features of a tumour suppressor. Nat Genet 14: 69–77, 1996

    Google Scholar 

  105. DuHadaway JB, Sakamuro D, Ewert DL, Prendergast GC: Bin1 mediates apoptosis by c-Myc in transformed primary cells. Cancer Res 61: 3151–3156, 2001

    Google Scholar 

  106. Ge K, Minhas F, Duhadaway J, Mao NC, Wilson D, Buccafusca R, Sakamuro D, Nelson P, Malkowicz SB, Tomaszewski J, Prendergast GC: Loss of heterozygosity and tumor suppressor activity of Bin1 in prostate carcinoma. Int J Cancer 86: 155–161, 2000

    Google Scholar 

  107. Elliott K, Ge K, Du W, Prendergast GC: The c-Mycinteracting adaptor protein Bin1 activates a caspaseindependent cell death program. Oncogene 19: 4669–4684, 2000

    Google Scholar 

  108. Bruckheimer EM, Kyprianou N: Apoptosis in prostate carcinogenesis. A growth regulator and a therapeutic target. Cell Tissue Res 301: 153–162, 2000

    Google Scholar 

  109. Hocevar BA, Howe PH: Mechanisms of TGF-beta-induced cell cycle arrest. Miner Electrolyte Metab 24: 131–135, 1998

    Google Scholar 

  110. Martikainen P, Kyprianou N, Isaacs JT: Effect of transforming growth factor-beta 1 on proliferation and death of rat prostatic cells, Endocrinology 127: 2963–2968, 1990

    Google Scholar 

  111. Oberhammer F, Bursch W, Tiefenbacher R, Froschl G, Pavelka M, Purchio T, Schulte-Hermann R: Apoptosis is induced by transforming growth factor-beta 1 within 5 hours in regressing liver without significant fragmentation of the DNA. Hepatology 18: 1238–1246, 1993

    Google Scholar 

  112. Russell PJ, Bennett S, Stricker P: Growth factor involvement in progression of prostate cancer. Clin Chem 44: 705–723, 1998

    Google Scholar 

  113. Danielpour D, Kadomatsu K, Anzano MA, Smith JM, Sporn MB: Development and characterization of nontumorigenic and tumorigenic epithelial cell lines from rat dorsal-lateral prostate. Cancer Res 54: 3413–3421, 1994

    Google Scholar 

  114. Robson CN, Gnanapragasam V, Byrne RL, Collins AT, Neal DE: Transforming growth factor-beta1 up-regulates p15, p21 and p27 and blocks cell cycling in G1 in human prostate epithelium. J Endocrinol 160: 257–266, 1999

    Google Scholar 

  115. Kyprianou N, Isaacs JT: Identification of a cellular receptor for transforming growth factor-beta in rat ventral prostate and its negative regulation by androgens. Endocrinology 123: 2124–2131, 1988

    Google Scholar 

  116. Steiner MS: Transforming growth factor-beta and prostate cancer. World J Urol 13: 329–336, 1995

    Google Scholar 

  117. Wilding G, Zugmeier G, Knabbe C, Flanders K, Gelmann E: Differential effects of transforming growth factor beta on human prostate cancer cells in vitro. Mol Cell Endocrinol 62: 79–87, 1989

    Google Scholar 

  118. Kundu SD, Kim IY, Yang T, Doglio L, Lang S, Zhang X, Buttyan R, Kim SJ, Chang J, Cai X, Wang Z, Lee C: Absence of proximal duct apoptosis in the ventral prostate of transgenic mice carrying the C3(1)-TGF-beta type II dominant negative receptor. Prostate 43: 118–124, 2000

    Google Scholar 

  119. Guo Y, Kyprianou N: Restoration of transforming growth factor beta signaling pathway in human prostate cancer cells suppresses tumorigenicity via induction of caspase-1–mediated apoptosis. Cancer Res 59: 1366–1371, 1999

    Google Scholar 

  120. Hayes SA, Zarnegar M, Sharma M, Yang F, Peehl DM, ten Dijke P, Sun Z: SMAD3 represses androgen receptormediated transcription. Cancer Res 61: 2112–2118, 2001

    Google Scholar 

  121. Sells SF, Han SS, Muthukkumar S, Maddiwar N, Johnstone R, Boghaert E, Gillis D, Liu G, Nair P, Monnig S, Collini P, Mattson MP, Sukhatme VP, Zimmer SG, Wood DP Jr, McRoberts JW, Shi Y, Rangnekar VM: Expression and function of the leucine zipper protein Par-4 in apoptosis. Mol Cell Biol 17: 3823–3832, 1997

    Google Scholar 

  122. Diaz-Meco MT, Municio MM, Frutos S, Sanchez P, Lozano J, Sanz L, Moscat J: The product of par-4, a gene induced during apoptosis, interacts selectively with the atypical isoforms of protein kinase C. Cell 86: 777–786, 1996

    Google Scholar 

  123. Johnstone RW, See RH, Sells SF, Wang J, Muthukkumar S, Englert C, Haber DA, Licht JD, Sugrue SP, Roberts T, Rangnekar VM, Shi Y: A novel repressor, par-4, modulates transcription and growth suppression functions of the Wilms' tumor suppressor WT1. Mol Cell Biol 16: 6945–6956, 1996

    Google Scholar 

  124. Page G, Kogel D, Rangnekar V, Scheidtmann KH: Interaction partners of Dlk/ZIP kinase: Co-expression of Dlk/ZIP kinase and Par-4 results in cytoplasmic retention and apoptosis. Oncogene 18: 7265–7273, 1999

    Google Scholar 

  125. Qiu SG, Krishnan S, el-Guendy N, Rangnekar VM: Negative regulation of Par-4 by oncogenic Ras is essential for cellular transformation. Oncogene 18: 7115–7123, 1999

    Google Scholar 

  126. Barradas M, Monjas A, Diaz-Meco MT, Serrano M, Moscat J: The downregulation of the pro-apoptotic prote in Par-4 is critical for Ras-induced survival and tumor progression. EMBO J 18: 6362–6369, 1999

    Google Scholar 

  127. Berra E, Municio MM, Sanz L, Frutos S, Diaz-Meco MT, Moscat J: Positioning atypical prote in kinase C isoforms in the UV-induced apoptotic signaling cascade. Mol Cell Biol 17: 4346–4354, 1997

    Google Scholar 

  128. Nalca A, Qiu SG, El-Guendy N, Krishnan S, Rangnekar VM: Oncogenic Ras sensitizes cells to apoptosis by Par-4. J Biol Chem 274: 29976–29983, 1999

    Google Scholar 

  129. Diaz-Meco MT, Lallena MJ, Monjas A, Frutos S, Moscat J: Inactivation of the inhibitory kappaB prote in kinase/nuclear factor kappaB pathway by Par-4 expression potentiates tumor necrosis factor alpha-induced apoptosis. J Biol Chem 274: 1960 6–19612, 1999

    Google Scholar 

  130. Boghaert ER, Sells SF, Walid AJ, Malone P, Williams NM, Weinstein MH, Strange R, Rangnekar VM: Immunohistochemical analysis of the proapoptotic protein Par-4 in normal rat tissues. Cell Growth Differ 8: 881–890, 1997

    Google Scholar 

  131. Qiu G, Ahmed M, Sells SF, Weinstein MH, Rangnekar VM: Mutually exclusive expression patterns of Bcl-2 and Par-4 in human prostate tumors consistent with down-regulation of Bcl-2 by Par-4. Oncogene 18: 623–631, 1999

    Google Scholar 

  132. Matsubara S, Wada Y, Gardner TA, Egawa M, Park MS, Hsieh CL, Zhau HE, Kao C, Kamidono S, Gillenwater JY, Chung LW: A conditional replication-competent adenoviral vector, Ad-OC-E1a, to cotarget prostate cancer and bone stroma in an experimental model of androgen-independent prostate cancer bone metastasis. Cancer Res 61: 6012–6019, 2001

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gurumurthy, S., Murthi Vasudevan, K. & Rangnekar, V.M. Regulation of Apoptosis in Prostate Cancer. Cancer Metastasis Rev 20, 225–243 (2001). https://doi.org/10.1023/A:1015583310759

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1015583310759

Navigation