Skip to main content
Log in

Human Papillomavirus and Blastocyst Apoptosis

  • Note
  • Published:
Journal of Assisted Reproduction and Genetics Aims and scope Submit manuscript

Abstract

Purpose : The effect of human papillomavirus (HPV) DNA from the E6-E7 region on the integrity of DNA in blastocyst stage embryonic cells was studied. The study design paralleled the event whereby HPV DNA from the infecting virus would target host cell DNA. The objectives were (a) to determine if the DNA of blastocysts were disrupted by the presence of HPV DNA and (b) to determine if the intensity of DNA damage was associated with the type of HPV.

Methods : This study involved superovulating female mice, mating, collecting one-cell embryos, and culturing to the expanded blastocyst stage. The blastocysts were infected with PCR-synthesized DNA fragments from either HPV type 16, 18, 31, or 33. The blastocyst DNA were analyzed by comet assay after 24 h of incubation. The fluorescent images were digitized and the pixel intensity of each blastocyst was measured.

Results : Only the DNA of HPV type 16 was associated with significant DNA fragmentation in comparison with the other HPV types. There was no relationship between HPV DNA fragment size and the intensity of DNA fragmentation.

Conclusions : The data suggested that one mode of action of HPV type 16 was to initiate apoptosis of embryonic cells through DNA fragmentation. The effect of HPV 16 occurred rapidly within 24 h. The intensity of DNA damage was not linked to the specific type of HPV. However, the results do not rule out the other HPV types affecting embryos under conditions different from this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

REFERENCES

  1. Hermonat PL, Kechelava S, Lowery CL, Korourian S: Trophoblasts are the preferential target for human papilloma virus infection in spontaneously aborted products of conception. Human Pathol 1998;29:170–174

    Google Scholar 

  2. Stagno S, Pass RF, Dworsky ME, Alford CA: Congenital and perinatal cytomegalovirus infections. Semin Perinatol 1986;7:31–42

    Google Scholar 

  3. Icart J, Didier J, Dalens M, Chabanon G, Boucays A: Prospective study of EBV infection during pregnancy. Biomedicine 1981;34:160–163

    Google Scholar 

  4. Brown ZA, Vontver LA, Benedetti J, Critchlow CW, Sells CJ, Berry S, Corey L: Effects on infants of a first episode of genital herpes during pregnancy. N Engl J Med 1987;317:1246–1251

    Google Scholar 

  5. Monif GR: Maternal mumps infections during gestation: Observations in the progeny. Am J Obstet Gynecol 1974;119:549–551

    Google Scholar 

  6. Miller E, Cradock-Watson JE, Pollock TM: Consequences of confirmed maternal rubella at successive stages of pregnancy. Lancet 1982;2:781–784

    Google Scholar 

  7. Hermonat PL, Han L, Wendel PJ, Quirk JG, Stern S, Lowery CL, Rechtin TM: Human papillomavirus is more prevalent in first trimester spontaneously aborted products of conception compared to elective specimens. Virus Genes 1997;14:13–17

    Google Scholar 

  8. Manavi M, Czerwenka KF, Schurz B, Knogler W, Kubista E, Reinold E: Latent cervical virus infection as a possible cause of early abortion. Gynakol Geburtshilfliche Rundsch 1992;32: 84–87

    Google Scholar 

  9. Malhomme O, Dutheil N, Rabreau M, Armbruster-Moraes E, Schlehofer JR, Dupressoir T: Human genital tissues containing DNA of adeno-associated virus lack DNA sequences of the helper viruses, adenovirus, herpes simplex virus or cytomegalovirus but frequently contain human papillomavirus DNA. J Gen Virol 1997;78:1957–1962

    Google Scholar 

  10. Sifakis S, Ergazaki M, Sourvinos G, Koffa M, Koumantakis E, Spandidos DA: Evaluation of parvo B19, CMV, and HPV viruses inhumanaborted material using polymerase chain reaction technique. Eur J Obstet Gynecol Reprod Biol 1998;76: 169–173

    Google Scholar 

  11. Chan PJ, Seraj IM, Kalugdan TH, King A: Blastocysts exhibit preferential uptake of DNA fragments from the E6-E7 conserved region of the human papillomavirus. Gynecol Oncol 1995;58:194–197

    Google Scholar 

  12. Chan PJ, Seraj IM, Kalugdan TH, King A: Evidence for ease of transmission of human papillomavirus DNA from sperm to cells of the uterus and embryo. J Assist Reprod Genet 1996;13:516–519

    Google Scholar 

  13. Alani RM, Münger K: Human papillomavirus and associated malignancies. J Clin Oncol 1997;16:330–337

    Google Scholar 

  14. Rafferty KA Jr: Superovulation and phasing of ovulation. In Methods in Experimental Embryology of the Mouse, KA Rafferty Jr (ed), Baltimore, The John Hopkins Press, 1970, pp 23–29

    Google Scholar 

  15. Quinn PJ, Kerin JF, Warnes GM: Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril 1985;44: 493–498

    Google Scholar 

  16. Ting Y, Manos MM: Detection and typing of genital human papillomaviruses. In PCR Protocols, MA Innis, DH Gelfand, JJ Sninsky, TJ White (eds), New York, Academic Press, 1990, pp 356–367

    Google Scholar 

  17. Sarkar FH, Crissman JD: Detection of human papilloma virus DNA sequences by polymerase chain reaction. Biotechniques 1990;9:180–185

    Google Scholar 

  18. Chan PJ, Kalugdan TH, Cabrera M, Seraj IM, King A: Detection of exogenous DNA in blastocysts after continuous exposure to DNA carrier sperm. J Assist Reprod Genet 1996;13:602–605

    Google Scholar 

  19. Dürst M, Croce CM, Gissmann L, Schwarz E, Huebner K: Papillomavirus sequences integrate near cellular oncogenes in some cervical carcinomas. Proc Natl Acad Sci USA 1987; 84:1070–1074

    Google Scholar 

  20. Yunis JJ, Soreng AL, Bowe AE: Fragile sites are targets of diverse mutagens and carcinogens. Oncogene 1987;1: 59–69

    Google Scholar 

  21. Cannizzaro LA, Dürst M, Mendez MJ, Hecht BK, Hecht F: Regional chromosome localization of human papillomavirus integration sites near fragile sites, oncogenes and cancer chromosome breakpoints. Cancer Genet Cytogenet 1988;33:93–98

    Google Scholar 

  22. Popescu NC, DiPaolo JA: Preferential sites for viral integration on mammalian genome. Cancer Genet Cytogenet 1989;42: 157–171

    Google Scholar 

  23. Rassool FV, McKeithan TW, Neilly ME, van Melle E, Espinosa R III, Le Beau MM: Preferential integration of marker DNA into the chromosomal fragile site at 3p14: An approach to cloning fragile sites. Proc Natl Acad Sci USA 1991;88:6657–6661

    Google Scholar 

  24. Smith PP, Friedman CL, Bryant EM, McDougall JK:Viral integration and fragile sites in human papillomavirus-immortalized human keratinocyte cell lines. Genes Chromosomes Cancer 1995;5:150–157

    Google Scholar 

  25. Gallego MI, Lazo PA: Deletion in human chromosome region 12q13-15 by integration of human papillomvirus DNA in a cervical carcinoma cell line. J Biol Chem 1995;270: 24321–24326

    Google Scholar 

  26. Graham DA, Herrington CS: The induction of chromosome abnormalities by human papillomavirus. Papillomavirus Rep 1998;9:1–5

    Google Scholar 

  27. Östling O, Johanson KJ: Microelectrophoretic study of radiation-induced DNA damages in individual cells. Biochem Biophys Res Commun 1984;123:291–298

    Google Scholar 

  28. Singh NP, McCoy MT, Tice RR, Schneider EL: A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988;175:184–191

    Google Scholar 

  29. Singh NP, Danner D, Tice RR, McCoy MT, Collins GD, Schneider EL: Abundant alkali sensitive sites in DNA of human and mouse sperm. Exp Cell Res 1989;184: 461–470

    Google Scholar 

  30. Fairbairn DW, Olive PL, O'Neill KL: The comet assay: A comprehensive review. Mutat Res 1995;339:37–59

    Google Scholar 

  31. McKelvey-Martin VJ, Green MHL, Schmezer P, Pool-Zobel BL, De Meo MP, Collins A: The single cell gel electrophoresis assay (comet assay): A European review. Mutat Res 1993;288:47–63

    Google Scholar 

  32. Kizilian N, Wilkins RC, Reinhardt P, Ferrarotto C, McLean JR, McNamee JP: Silver-stained comet assay for detection of apoptosis. Biotechniques 1999;27:926–930

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip J. Chan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calinisan, J.H., Chan, S.R., King, A. et al. Human Papillomavirus and Blastocyst Apoptosis. J Assist Reprod Genet 19, 132–136 (2002). https://doi.org/10.1023/A:1014736805127

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1014736805127

Navigation