Skip to main content
Log in

The Importance of Standardization on Analyzing Circulating RNA

  • Review Article
  • Published:
Molecular Diagnosis & Therapy Aims and scope Submit manuscript

Abstract

Circulating RNAs, especially microRNAs (miRNAs), have recently emerged as non-invasive disease biomarkers. Despite enthusiasm and numerous reports on disease-associated circulating miRNAs, currently there is no circulating miRNA-based diagnostic in use. In addition, there are many contradictory reports on the concentration changes of specific miRNA in circulation. Here we review the impact of various technical and non-technical factors related to circulating miRNA measurement and elucidate the importance of having a general guideline for sample preparation and concentration measurement in studying circulating RNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mandel P, Metais P. Comptes rendus séances société. C R Seances Soc Biol Fil. 1948;142(3–4):241–3.

    CAS  PubMed  Google Scholar 

  2. Kopreski MS, et al. Detection of tumor messenger RNA in the serum of patients with malignant melanoma. Clin Cancer Res. 1999;5(8):1961–5.

    CAS  PubMed  Google Scholar 

  3. Miura N, et al. Clinical usefulness of serum telomerase reverse transcriptase (hTERT) mRNA and epidermal growth factor receptor (EGFR) mRNA as a novel tumor marker for lung cancer. Cancer Sci. 2006;97(12):1366–73.

    Article  CAS  PubMed  Google Scholar 

  4. Barzon L, et al. Evaluation of circulating thyroid-specific transcripts as markers of thyroid cancer relapse. Int J Cancer. 2004;110(6):914–20.

    Article  CAS  PubMed  Google Scholar 

  5. Mitchell PS, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci. 2008;105(30):10513–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Wang K, et al. Circulating microRNAs, potential biomarkers for drug-induced liver injury. Proc Natl Acad Sci. 2009;106(11):4402–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Etheridge A, et al. Extracellular microRNA: a new source of biomarkers. Mutat Res. 2011;717(1–2):85–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chevillet JR, et al. Issues and prospects of microRNA-based biomarkers in blood and other body fluids. Molecules. 2014;19(5):6080–105.

    Article  PubMed  CAS  Google Scholar 

  9. Lim LP, et al. Vertebrate microRNA genes. Science. 2003;299(5612):1540.

    Article  CAS  PubMed  Google Scholar 

  10. Lau NC, et al. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science. 2001;294(5543):858–62.

    Article  CAS  PubMed  Google Scholar 

  11. Ambros V, et al. A uniform system for microRNA annotation. RNA. 2003;9(3):277–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet. 2004;5(7):522–31.

    Article  CAS  PubMed  Google Scholar 

  13. Eulalio A, Huntzinger E, Izaurralde E. Getting to the root of miRNA-mediated gene silencing. Cell. 2008;132(1):9–14.

    Article  CAS  PubMed  Google Scholar 

  14. Bushati N, Cohen SM. microRNA functions. Annu Rev Cell Dev Biol. 2007;23:175–205.

    Article  CAS  PubMed  Google Scholar 

  15. Kong YW, et al. The mechanism of micro-RNA-mediated translation repression is determined by the promoter of the target gene. Proc Natl Acad Sci. 2008;105(26):8866–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ruike Y, et al. Global correlation analysis for micro-RNA and mRNA expression profiles in human cell lines. J Hum Genet. 2008;53(6):515–23.

    Article  CAS  PubMed  Google Scholar 

  17. Lee I, et al. New class of microRNA targets containing simultaneous 5′-UTR and 3′-UTR interaction sites. Genome Res. 2009;19(7):1175–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell. 2009;136(2):215–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Fabian MR, Sonenberg N, Filipowicz W. Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem. 2010;79:351–79.

    Article  CAS  PubMed  Google Scholar 

  20. Griffiths-Jones S, et al. miRBase: microRNA sequences, targets and gene nomenclature. Nucleic Acids Res. 2006;34(Database issue):D140–4.

  21. Smalheiser NR. Exosomal transfer of proteins and RNAs at synapses in the nervous system. Biology direct. 2007;2:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Valadi H, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9(6):654–9.

    Article  CAS  PubMed  Google Scholar 

  23. Vickers KC, et al. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011;13(4):423–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Michell DL, Vickers KC. Lipoprotein carriers of microRNAs. Biochimica et biophysica acta. 2016;1861:2069–74.

    Article  CAS  PubMed  Google Scholar 

  25. Wagner J, et al. Characterization of levels and cellular transfer of circulating lipoprotein-bound microRNAs. Arterioscler Thromb Vasc Biol. 2013;33(6):1392–400.

    Article  CAS  PubMed  Google Scholar 

  26. Wang K, et al. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 2010;38(20):7248–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Arroyo JD, et al. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc Natl Acad Sci. 2011;108(12):5003–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Turchinovich A, Burwinkel B. Distinct AGO1 and AGO2 associated miRNA profiles in human cells and blood plasma. RNA Biol. 2012;9(8):1066–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Thery C, Zitvogel L, Amigorena S. Exosomes: composition, biogenesis and function. Nat Rev Immunol. 2002;2(8):569–79.

    CAS  PubMed  Google Scholar 

  30. Pan BT, Johnstone RM. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell. 1983;33(3):967–78.

    Article  CAS  PubMed  Google Scholar 

  31. Andaloussi SEL, et al. Extracellular vesicles: biology and emerging therapeutic opportunities. Nat Rev Drug Discov. 2013;12(5):347–57.

  32. Borges FT, Reis LA, Schor N. Extracellular vesicles: structure, function, and potential clinical uses in renal diseases. Braz J Med Biol Res = Revista brasileira de pesquisas medicas e biologicas/Sociedade Brasileira de Biofisica … [et al.]. 2013;46(10):824–30.

  33. Raposo G, Stoorvogel W. Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol. 2013;200(4):373–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gyorgy B, et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 2011;68(16):2667–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Denzer K, et al. Exosome: from internal vesicle of the multivesicular body to intercellular signaling device. J Cell Sci. 2000;113(Pt 19):3365–74.

    CAS  PubMed  Google Scholar 

  36. Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9(3):231–41.

    Article  CAS  PubMed  Google Scholar 

  37. Mathivanan S, Ji H, Simpson RJ. Exosomes: extracellular organelles important in intercellular communication. J Proteom. 2010;73(10):1907–20.

    Article  CAS  Google Scholar 

  38. Eichelser C, et al. Increased serum levels of circulating exosomal microRNA-373 in receptor-negative breast cancer patients. Oncotarget. 2014;5(20):9650–63.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Braicu C, et al. Exosomes as divine messengers: are they the Hermes of modern molecular oncology? Cell Death Differ. 2015;22(1):34–45.

    Article  CAS  PubMed  Google Scholar 

  40. Kanada M, et al. Differential fates of biomolecules delivered to target cells via extracellular vesicles. Proc Natl Acad Sci. 2015;112(12):E1433–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Yoon YJ, Kim OY, Gho YS. Extracellular vesicles as emerging intercellular communicasomes. BMB reports. 2014;47(10):531–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Salaspuro M. Use of enzymes for the diagnosis of alcohol-related organ damage. Enzyme. 1987;37(1–2):87–107.

    CAS  PubMed  Google Scholar 

  43. Borlak J, Chougule A, Singh PK. How useful are clinical liver function tests in in vitro human hepatotoxicity assays? Toxicol In Vitro. 2014;28(5):784–95.

    Article  CAS  PubMed  Google Scholar 

  44. Gowda S, et al. A review on laboratory liver function tests. Pan Afr Med J. 2009;3:17.

    PubMed  PubMed Central  Google Scholar 

  45. James O, et al. Liver damage after paracetamol overdose. Comparison of liver-function tests, fasting serum bile acids, and liver histology. Lancet. 1975;2(7935):579–81.

    Article  CAS  PubMed  Google Scholar 

  46. Crawford ED, DeAntoni EP. PSA as a screening test for prostate cancer. Urol Clin N Am. 1993;20(4):637–46.

    CAS  Google Scholar 

  47. Catalona WJ, et al. Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening. JAMA. 1993;270(8):948–54.

    Article  CAS  PubMed  Google Scholar 

  48. Bagcchi S. PSA testing beneficial for prostate cancer. Lancet Oncol. 2014;15(10):e424.

    Article  PubMed  Google Scholar 

  49. Katus HA, et al. Diagnostic efficiency of troponin T measurements in acute myocardial infarction. Circulation. 1991;83(3):902–12.

    Article  CAS  PubMed  Google Scholar 

  50. Antman EM, et al. Cardiac-specific troponin I levels to predict the risk of mortality in patients with acute coronary syndromes. N Engl J Med. 1996;335(18):1342–9.

    Article  CAS  PubMed  Google Scholar 

  51. Brase JC, et al. Circulating miRNAs are correlated with tumor progression in prostate cancer. Int J Cancer. 2011;128(3):608–16.

    Article  CAS  PubMed  Google Scholar 

  52. Westermann AM, et al. Serum microRNAs as biomarkers in patients undergoing prostate biopsy: results from a prospective multi-center study. Anticancer Res. 2014;34(2):665–9.

    CAS  PubMed  Google Scholar 

  53. Laterza OF, et al. Plasma MicroRNAs as sensitive and specific biomarkers of tissue injury. Clin Chem. 2009;55(11):1977–83.

    Article  CAS  PubMed  Google Scholar 

  54. Starkey Lewis PJ, et al. Circulating microRNAs as potential markers of human drug-induced liver injury. Hepatology. 2011;54(5):1767–76.

    Article  CAS  PubMed  Google Scholar 

  55. Hu Z, et al. Quantitative liver-specific protein fingerprint in blood: a signature for hepatotoxicity. Theranostics. 2014;4(2):215–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fichtlscherer S, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107(5):677–84.

    Article  CAS  PubMed  Google Scholar 

  57. Adachi T, et al. Plasma microRNA 499 as a biomarker of acute myocardial infarction. Clin Chem. 2010;56(7):1183–5.

    Article  CAS  PubMed  Google Scholar 

  58. Li C, et al. Serum microRNAs profile from genome-wide serves as a fingerprint for diagnosis of acute myocardial infarction and angina pectoris. BMC Med Genomics. 2013;6:16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Wang GK, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659–66.

    Article  PubMed  CAS  Google Scholar 

  60. Shi R, Chiang VL. Facile means for quantifying microRNA expression by real-time PCR. Biotechniques. 2005;39(4):519–25.

    Article  CAS  PubMed  Google Scholar 

  61. Chen C, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33(20):e179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  62. Schmittgen TD, et al. Real-time PCR quantification of precursor and mature microRNA. Methods. 2008;44(1):31–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sato F, et al. Intra-platform repeatability and inter-platform comparability of microRNA microarray technology. PLoS One. 2009;4(5):e5540.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Git A, et al. Systematic comparison of microarray profiling, real-time PCR, and next-generation sequencing technologies for measuring differential microRNA expression. RNA. 2010;16(5):991–1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hafner M, et al. RNA-ligase-dependent biases in miRNA representation in deep-sequenced small RNA cDNA libraries. RNA. 2011;17(9):1697–712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fuchs RT, et al. Bias in ligation-based small RNA sequencing library construction is determined by adaptor and RNA structure. PLoS One. 2015;10(5):e0126049.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Wang K, et al. Comparing the MicroRNA spectrum between serum and plasma. PLoS One. 2012;7(7):e41561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. McDonald JS, et al. Analysis of circulating microRNA: preanalytical and analytical challenges. Clin Chem. 2011;57(6):833–40.

    Article  CAS  PubMed  Google Scholar 

  69. Kirschner MB, et al. Haemolysis during sample preparation alters microRNA content of plasma. PLoS One. 2011;6(9):e24145.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kirschner MB, et al. The impact of hemolysis on cell-free microRNA biomarkers. Front Genet. 2013;4:94.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Pritchard CC, Cheng HH, Tewari M. MicroRNA profiling: approaches and considerations. Nat Rev Genet. 2012;13(5):358–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Cheng HH, et al. Plasma processing conditions substantially influence circulating microRNA biomarker levels. PLoS One. 2013;8(6):e64795.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Duttagupta R, et al. Impact of cellular miRNAs on circulating miRNA biomarker signatures. PLoS One. 2011;6(6):e20769.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang YT, et al. Circulating microRNAs have a sex-specific association with metabolic syndrome. J Biomed Sci. 2013;20:72.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Rekker K, et al. Circulating microRNA Profile throughout the menstrual cycle. PLoS One. 2013;8(11):e81166.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Ioannidis J, Donadeu FX. Circulating microRNA profiles during the bovine oestrous cycle. PLoS One. 2016;11(6):e0158160.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Cho S, et al. Circulating microRNAs as potential biomarkers for endometriosis. Fertil Steril. 2015;103(5):1252–60 e1.

  78. Cosar E, et al. Serum microRNAs as diagnostic markers of endometriosis: a comprehensive array-based analysis. Fertil Steril. 2016;106(2):402–9.

    Article  CAS  PubMed  Google Scholar 

  79. Miura K, et al. Circulating chromosome 19 miRNA cluster microRNAs in pregnant women with severe pre-eclampsia. J Obstet Gynaecol Res. 2015;41(10):1526–32.

    Article  CAS  PubMed  Google Scholar 

  80. Ioannidis J, Donadeu FX. Circulating miRNA signatures of early pregnancy in cattle. BMC Genom. 2016;17:184.

    Article  CAS  Google Scholar 

  81. Gu Y, et al. Differential miRNA expression profiles between the first and third trimester human placentas. Am J Physiol Endocrinol Metab. 2013;304(8):E836–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Danielson KM, et al. Diurnal variations of circulating extracellular vesicles measured by nano flow cytometry. PLoS One. 2016;11(1):e0144678.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  83. Shende VR, et al. Expression and rhythmic modulation of circulating microRNAs targeting the clock gene Bmal1 in mice. PLoS One. 2011;6(7):e22586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Heegaard NH, et al. Diurnal variations of human circulating cell-free micro-RNA. PLoS One. 2016;11(8):e0160577.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Wang K, et al. The complex exogenous RNA spectra in human plasma: an interface with human gut biota? PLoS One. 2012;7(12):e51009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Witwer KW. Contamination or artifacts may explain reports of plant miRNAs in humans. J Nutr Biochem. 2015;26(12):1685.

    Article  CAS  PubMed  Google Scholar 

  87. Witwer KW, et al. Real-time quantitative PCR and droplet digital PCR for plant miRNAs in mammalian blood provide little evidence for general uptake of dietary miRNAs: limited evidence for general uptake of dietary plant xenomiRs. RNA Biol. 2013;10(7):1080–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Witwer KW, Hirschi KD. Transfer and functional consequences of dietary microRNAs in vertebrates: concepts in search of corroboration: negative results challenge the hypothesis that dietary xenomiRs cross the gut and regulate genes in ingesting vertebrates, but important questions persist. BioEssays. 2014;36(4):394–406.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. MacLellan SA, et al. Pre-profiling factors influencing serum microRNA levels. BMC Clin Pathol. 2014;14:27.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  90. Gomes CP, et al. Circulating miR-1, miR-133a, and miR-206 levels are increased after a half-marathon run. Biomarkers. 2014;19(7):585–9.

    Article  CAS  PubMed  Google Scholar 

  91. Nielsen S, et al. The miRNA plasma signature in response to acute aerobic exercise and endurance training. PLoS One. 2014;9(2):e87308.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  92. Uhlemann M, et al. Circulating microRNA-126 increases after different forms of endurance exercise in healthy adults. Eur J Prev Cardiol. 2014;21(4):484–91.

    Article  PubMed  Google Scholar 

  93. Baggish AL, et al. Dynamic regulation of circulating microRNA during acute exhaustive exercise and sustained aerobic exercise training. J Physiol. 2011;589(Pt 16):3983–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Willems M, et al. Plasma collected from heparinized blood is not suitable for HCV-RNA detection by conventional RT-PCR assay. J Virol Methods. 1993;42(1):127–30.

    Article  CAS  PubMed  Google Scholar 

  95. Ding M, et al. An optimized sensitive method for quantitation of DNA/RNA viruses in heparinized and cryopreserved plasma. J Virol Methods. 2011;176(1–2):1–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Moldovan L, et al. Analyzing the circulating microRNAs in exosomes/extracellular vesicles from serum or plasma by qRT-PCR. Methods Mol Biol. 2013;1024:129–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Li X, Mauro M, Williams Z. Comparison of plasma extracellular RNA isolation kits reveals kit-dependent biases. Biotechniques. 2015;59(1):13–7.

    Article  CAS  PubMed  Google Scholar 

  98. Tanriverdi K, et al. Comparison of RNA isolation and associated methods for extracellular RNA detection by high-throughput quantitative polymerase chain reaction. Anal Biochem. 2016;501:66–74.

    Article  CAS  PubMed  Google Scholar 

  99. Farr RJ, et al. A comparative analysis of high-throughput platforms for validation of a circulating microRNA signature in diabetic retinopathy. Sci Rep. 2015;5:10375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kim S, et al. Deep learning of support vector machines with class probability output networks. Neural Netw. 2015;64:19–28.

    Article  PubMed  Google Scholar 

  101. Chen Y, et al. Reproducibility of quantitative RT-PCR array in miRNA expression profiling and comparison with microarray analysis. BMC Genom. 2009;10:407.

    Article  CAS  Google Scholar 

  102. Backes C, et al. Bias in high-throughput analysis of miRNAs and implications for biomarker studies. Anal Chem. 2016;88(4):2088–95.

    Article  CAS  PubMed  Google Scholar 

  103. Mestdagh P, et al. Evaluation of quantitative miRNA expression platforms in the microRNA quality control (miRQC) study. Nat Methods. 2014;11(8):809–15.

    Article  CAS  PubMed  Google Scholar 

  104. Tan GW, Khoo AS, Tan LP. Evaluation of extraction kits and RT-qPCR systems adapted to high-throughput platform for circulating miRNAs. Sci Rep. 2015;5:9430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Pradervand S, et al. Concordance among digital gene expression, microarrays, and qPCR when measuring differential expression of microRNAs. Biotechniques. 2010;48(3):219–22.

    Article  CAS  PubMed  Google Scholar 

  106. Mou G, et al. Evaluation of three RT-qPCR-based miRNA detection methods using seven rice miRNAs. Biosci Biotechnol Biochem. 2013;77(6):1349–53.

    Article  CAS  PubMed  Google Scholar 

  107. Baran-Gale J, et al. Addressing bias in small RNA library preparation for sequencing: a new protocol recovers MicroRNAs that evade capture by current methods. Front Genet. 2015;6:352.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  108. Huang X, et al. Characterization of human plasma-derived exosomal RNAs by deep sequencing. BMC Genom. 2013;14:319.

    Article  CAS  Google Scholar 

  109. Sorefan K, et al. Reducing ligation bias of small RNAs in libraries for next generation sequencing. Silence. 2012;3(1):4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Tam S, Tsao MS, McPherson JD. Optimization of miRNA-seq data preprocessing. Brief Bioinform. 2015;16(6):950–63.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Bullard JH, et al. Evaluation of statistical methods for normalization and differential expression in mRNA-Seq experiments. BMC Bioinform. 2010;11:94.

    Article  CAS  Google Scholar 

  112. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biol. 2010;11(3):R25.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  113. Anders S, Huber W. Differential expression analysis for sequence count data. Genome Biol. 2010;11(10):R106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Bolstad BM, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003;19(2):185–93.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Taek-kyun Kim, Xiaogang Wu and Vikas Ghai for helpful discussion, and Deborah Min for editing the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Wang.

Ethics declarations

Conflict of interest statement

The authors (Kai Wang, Inyoul Lee, David Baxter, Min Young Lee, and Kelsey Scherler) declare that they have no competing interests.

Funding

This work is supported by grant from NIH (U01HL126496-02) and research contracts from DOD (W911NF-10-2-0111) and DTRA (HDTRA1-13-C-0055).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, I., Baxter, D., Lee, M.Y. et al. The Importance of Standardization on Analyzing Circulating RNA. Mol Diagn Ther 21, 259–268 (2017). https://doi.org/10.1007/s40291-016-0251-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40291-016-0251-y

Keywords

Navigation