Skip to main content
Log in

Syndromic autism: causes and pathogenetic pathways

  • Review Article
  • Published:
World Journal of Pediatrics Aims and scope Submit manuscript

Abstract

Background

Autism is a severe neurodevelopmental disorder known to have many different etiologies. In the last few years, significant progresses have been made in comprehending the causes of autism and their multiple impacts on the developing brain. This article aims to review the current understanding of the etiologies and the multiple pathogenetic pathways that are likely to lead to the autistic phenotype.

Data sources

The PubMed database was searched with the keywords “autism” and “chromosomal abnormalities”, “metabolic diseases”, “susceptibility loci”.

Results

Genetic syndromes, defined mutations, and metabolic diseases account for less than 20% of autistic patients. Alterations of the neocortical excitatory/inhibitory balance and perturbations of interneurons’ development represent the most probable pathogenetic mechanisms underlying the autistic phenotype in fragile X syndrome and tuberous sclerosis complex. Chromosomal abnormalities and potential candidate genes are strongly implicated in the disruption of neural connections, brain growth and synaptic/dendritic morphology. Metabolic and mitochondrial defects may have toxic effects on the brain cells, causing neuronal loss and altered modulation of neurotransmission systems.

Conclusions

A wide variety of cytogenetic abnormalities have been recently described, particularly in the low functioning individuals with dysmorphic features. Routine metabolic screening studies should be performed in the presence of autistic regression or suggestive clinical findings. As etiologies of autism are progressively discovered, the number of individuals with idiopathic autism will progressively shrink. Studies of genetic and environmentally modulated epigenetic factors are beginning to provide some clues to clarify the complexities of autism pathogenesis. The role of the neuropediatrician will be to understand the neurological basis of autism, and to identify more homogenous subgroups with specific biologic markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, 3rd ed. Washington DC: American Psychiatric Association, 1994.

    Google Scholar 

  2. Tuchman R, Rapin I. Autism: a neurological disorder of early brain development. London: Mac Keith Press for the ICNA, 2006.

    Google Scholar 

  3. Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci 2008;31:137–145.

    Article  PubMed  CAS  Google Scholar 

  4. Palmen SJ, van Engeland H, Hof PR, Schmitz C. Neuropathological findings in autism. Brain 2004;127: 2572–2583.

    Article  PubMed  Google Scholar 

  5. Wills S, Cabanlit M, Bennett J, Ashwood P, Amaral DG, Van de Water J. Detection of autoantibodies to neural cells of the cerebellum in the plasma of subjects with autism spectrum disorders. Brain Behav Immun 2009;23:64–74.

    Article  PubMed  CAS  Google Scholar 

  6. Persico AM, Bourgeron T. Searching for ways out of the autism maze: genetic, epigenetic and environmental clues. Trends Neurosci 2006;29:349–358.

    Article  PubMed  CAS  Google Scholar 

  7. Berney TP. Autism—an evolving concept. Br J Psychiatry 2000;176:20–25.

    Article  PubMed  CAS  Google Scholar 

  8. Miller MT, Stromland K, Ventura L, Johansson M, Bandim JM, Gillberg C. Autism associated with conditions characterized by developmental errors in early embryogenesis: a mini review. Int J Dev Neurosci 2005;23:201–219.

    Article  PubMed  Google Scholar 

  9. Herman GE, Henninger N, Ratliff-Schaub K, Pastore M, Fitzgerald S, McBride KL. Genetic testing in autism: how much is enough? Genet Med 2007;9:268–274.

    PubMed  Google Scholar 

  10. Sebat J, Lakshmi B, Malhotra D, Troge J, Lese-Martin C, Walsh T, et al. Strong association of de novo copy number mutations with autism. Science 2007;316:445–449.

    Article  PubMed  CAS  Google Scholar 

  11. Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nat Genet 2007;39:25–27.

    Article  PubMed  CAS  Google Scholar 

  12. Laumonnier F, Bonnet-Brilhault F, Gomot M, Blanc R, David A, Moizard MP, et al. X-linked mental retardation and autism are associated with a mutation in the NLGN4 gene, a member of the neuroligin family. Am J Hum Genet 2004;74:552–557.

    Article  PubMed  CAS  Google Scholar 

  13. Hagerman RJ, Ono MY, Hagerman PJ. Recent advances in fragile X: a model for autism and neurodegeneration. Curr Opin Psychiatry 2005;18:490–496.

    Article  PubMed  Google Scholar 

  14. Kaufmann WE, Cortell R, Kau AS, Bukelis I, Tierney E, Gray RM, et al. Autism spectrum disorder in fragile X syndrome: communication, social interaction, and specific behaviors. Am J Med Genet A 2004;129A:225–234.

    Article  PubMed  Google Scholar 

  15. Curatolo P, Porfirio MC, Manzi B, Seri S. Autism in tuberous sclerosis. Eur J Paediatr Neurol 2004;8:327–332.

    Article  PubMed  Google Scholar 

  16. Dykens EM, Sutcliffe JS, Levitt P. Autism and 15q11-q13 disorders: behavioral, genetic, and pathophysiological issues. Ment Retard Dev Disabil Res Rev 2004;10:284–291.

    Article  PubMed  Google Scholar 

  17. Weiss LA, Shen Y, Korn JM, Arking DE, Miller DT, Fossdal R, et al. Association between microdeletion and microduplication at 16p11. 2 and autism. N Engl J Med 2008;358:667–675.

    Article  PubMed  CAS  Google Scholar 

  18. Kumar RA, KaraMohamed S, Sudi J, Conrad DF, Brune C, Badner JA, et al. Recurrent 16p11.2 microdeletions in autism. Hum Mol Genet 2008;17:628–638.

    Article  PubMed  CAS  Google Scholar 

  19. Manning MA, Cassidy SB, Clericuzio C, Cherry AM, Schwartz S, Hudgins L, et al. Terminal 22q deletion syndrome: a newly recognized cause of speech and language disability in the autism spectrum. Pediatrics 2004;114:451–457.

    Article  PubMed  Google Scholar 

  20. Mukaddes NM, Herguner S. Autistic disorder and 22q11.2 duplication. World J Biol Psychiatry 2007;8:127–130.

    Article  PubMed  Google Scholar 

  21. Lukusa T, Vermeesch JR, Holvoet M, Fryns JP, Devriendt K. Deletion 2q37.3 and autism: molecular cytogenetic mapping of the candidate region for autistic disorder. Genet Couns 2004;15:293–301.

    PubMed  CAS  Google Scholar 

  22. Alvarez Retuerto AI, Cantor RM, Gleeson JG, Ustaszewska A, Schackwitz WS, Pennacchio LA, et al. Association of common variants in the Joubert syndrome gene (AHI1) with autism. Hum Mol Genet 2008;17:3887–3896.

    Article  PubMed  CAS  Google Scholar 

  23. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P, Bloise R, et al. Ca(V)1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 2004;119:19–31.

    Article  PubMed  CAS  Google Scholar 

  24. Alarcon M, Abrahams BS, Stone JL, Duvall JA, Perederiy JV, Bomar JM, et al. Linkage, association, and gene-expression analyses identify CNTNAP2 as an autism-susceptibility gene. Am J Hum Genet 2008;82:150–159.

    Article  PubMed  CAS  Google Scholar 

  25. Strauss KA, Puffenberger EG, Huentelman MJ, Gottlieb S, Dobrin SE, Parod JM, et al. Recessive symptomatic focal epilepsy and mutant contactin-associated protein-like 2. N Engl J Med 2006;354:1370–1377.

    Article  PubMed  CAS  Google Scholar 

  26. Clifford S, Dissanayake C, Bui QM, Huggins R, Taylor AK, Loesch DZ. Autism spectrum phenotype in males and females with fragile X full mutation and premutation. J Autism Dev Disord 2007;37:738–747.

    Article  PubMed  Google Scholar 

  27. Rogers SJ, Wehner DE, Hagerman R. The behavioral phenotype in fragile X: symptoms of autism in very young children with fragile X syndrome, idiopathic autism, and other developmental disorders. J Dev Behav Pediatr 2001;22:409–417.

    PubMed  CAS  Google Scholar 

  28. Rapin I, Tuchman RF. What is new in autism? Curr Opin Neurol 2008;21:143–149.

    Article  PubMed  Google Scholar 

  29. Bureau I, Shepherd GM, Svoboda K. Circuit and plasticity defects in the developing somatosensory cortex of FMR1 knock-out mice. J Neurosci 2008;28:5178–5188.

    Article  PubMed  CAS  Google Scholar 

  30. Selby L, Zhang C, Sun QQ. Major defects in neocortical GABAergic inhibitory circuits in mice lacking the fragile X mental retardation protein. Neurosci Lett 2007;412:227–232.

    Article  PubMed  CAS  Google Scholar 

  31. Gibson JR, Bartley AF, Hays SA, Huber KM. Imbalance of neocortical excitation and inhibition and altered UP states reflect network hyperexcitability in the mouse model of fragile X syndrome. J Neurophysiol 2008;100:2615–2626.

    Article  PubMed  Google Scholar 

  32. Pickett J, London E. The neuropathology of autism: a review. J Neuropathol Exp Neurol 2005;64:925–935.

    Article  PubMed  Google Scholar 

  33. Curatolo P, Bombardieri R, Jozwiak S. Tuberous sclerosis. Lancet 2008;372:657–668.

    Article  PubMed  CAS  Google Scholar 

  34. Napolioni V, Moavero R, Curatolo P. Recent advances in neurobiology of tuberous sclerosis complex. Brain Dev 2009;31:104–113.

    Article  PubMed  Google Scholar 

  35. Levitt P, Eagleson KL, Powell EM. Regulation of neocortical interneuron development and the implications for neurodevelopmental disorders. Trends Neurosci 2004;27:400–406.

    Article  PubMed  CAS  Google Scholar 

  36. Vorstman JA, Staal WG, van Daalen E, van Engeland H, Hochstenbach PF, Franke L. Identification of novel autism candidate regions through analysis of reported cytogenetic abnormalities associated with autism. Mol Psychiatry 2006;11:1,18–28.

    Google Scholar 

  37. Marshall CR, Noor A, Vincent JB, Lionel AC, Feuk L, Skaug J, et al. Structural variation of chromosomes in autism spectrum disorder. Am J Hum Genet 2008;82:477–488.

    Article  PubMed  CAS  Google Scholar 

  38. Shao Y, Cuccaro ML, Hauser ER, Raiford KL, Menold MM, Wolpert CM, et al. Fine mapping of autistic disorder to chromosome 15q11-q13 by use of phenotypic subtypes. Am J Hum Genet 2003;72:539–548.

    Article  PubMed  CAS  Google Scholar 

  39. Ma DQ, Whitehead PL, Menold MM, Martin ER, Ashley-Koch AE, Mei H, et al. Identification of significant association and gene-gene interaction of GABA receptor subunit genes in autism. Am J Hum Genet 2005;77:377–388.

    Article  PubMed  CAS  Google Scholar 

  40. Helbig I, Mefford HC, Sharp AJ, Guipponi M, Fichera M, Franke A, et al. 15q13.3 microdeletions increase risk of idiopathic generalized epilepsy. Nat Genet 2009;41:160–162.

    Article  PubMed  CAS  Google Scholar 

  41. International Molecular Genetic Study of Autism Consortium (IMGSAC). Further characterization of the autism susceptibility locus AUTS1 on chromosome 7q. Hum Mol Genet 2001;10:973–982.

    Article  Google Scholar 

  42. Yang MS, Gill M. A review of gene linkage, association and expression studies in autism and an assessment of convergent evidence. Int J Dev Neurosci 2007;25:69–85.

    Article  PubMed  CAS  Google Scholar 

  43. Fatemi SH, Snow AV, Stary JM, Araghi-Niknam M, Reutiman TJ, Lee S, et al. Reelin signaling is impaired in autism. Biol Psychiatry 2005;57:777–787.

    Article  PubMed  CAS  Google Scholar 

  44. Hong SE, Shugart YY, Huang DT, Shahwan SA, Grant PE, Hourihane JO, et al. Autosomal recessive lissencephaly with cerebellar hypoplasia is associated with human RELN mutations. Nat Genet 2000;26:93–96.

    Article  PubMed  CAS  Google Scholar 

  45. Quattrocchi CC, Wannenes F, Persico AM, Ciafre SA, D’Arcangelo G, Farace MG, et al. Reelin is a serine protease of the extracellular matrix. J Biol Chem 2002;277:303–309.

    Article  PubMed  CAS  Google Scholar 

  46. Campbell DB, Sutcliffe JS, Ebert PJ, Militerni R, Bravaccio C, Trillo S, et al. A genetic variant that disrupts MET transcription is associated with autism. Proc Natl Acad Sci U S A 2006;103:16834–16839.

    Article  PubMed  CAS  Google Scholar 

  47. Campbell DB, Buie TM, Winter H, Bauman M, Sutcliffe JS, Perrin JM, et al. Distinct genetic risk based on association of MET in families with co-occurring autism and gastrointestinal conditions. Pediatrics 2009;123:1018–1024.

    Article  PubMed  Google Scholar 

  48. Edelmann L, Prosnitz A, Pardo S, Bhatt J, Cohen N, Lauriat T, et al. An atypical deletion of the Williams-Beuren syndrome interval implicates genes associated with defective visuospatial processing and autism. J Med Genet 2007;44:136–143.

    Article  PubMed  CAS  Google Scholar 

  49. Kirchhoff M, Bisgaard AM, Bryndorf T, Gerdes T. MLPA analysis for a panel of syndromes with mental retardation reveals imbalances in 5.8% of patients with mental retardation and dysmorphic features, including duplications of the Sotos syndrome and Williams-Beuren syndrome regions. Eur J Med Genet 2007;50:33–42.

    Article  PubMed  Google Scholar 

  50. Meyer-Lindenberg A, Mervis CB, Berman KF. Neural mechanisms in Williams syndrome: a unique window to genetic influences on cognition and behaviour. Nat Rev Neurosci 2006;7:380–393.

    Article  PubMed  CAS  Google Scholar 

  51. Ballif BC, Hornor SA, Jenkins E, Madan-Khetarpal S, Surti U, Jackson KE, et al. Discovery of a previously unrecognized microdeletion syndrome of 16p11.2-p12.2. Nat Genet 2007;39:1071–1073.

    Article  PubMed  CAS  Google Scholar 

  52. Finelli P, Natacci F, Bonati MT, Gottardi G, Engelen JJ, de Die-Smulders CE, et al. FISH characterisation of an identical (16)(p11.2p12.2) tandem duplication in two unrelated patients with autistic behaviour. J Med Genet 2004;41:e90.

    Article  PubMed  CAS  Google Scholar 

  53. Philippi A, Roschmann E, Tores F, Lindenbaum P, Benajou A, Germain-Leclerc L, et al. Haplotypes in the gene encoding protein kinase c-beta (PRKCB1) on chromosome 16 are associated with autism. Mol Psychiatry 2005;10:950–960.

    Article  PubMed  CAS  Google Scholar 

  54. Lintas C, Sacco R, Garbett K, Mirnics K, Militerni R, Bravaccio C, et al. Involvement of the PRKCB1 gene in autistic disorder: significant genetic association and reduced neocortical gene expression. Mol Psychiatry 2008. doi:10.1038/mp.2008.21

  55. Casas KA, Mononen TK, Mikail CN, Hassed SJ, Li S, Mulvihill JJ, et al. Chromosome 2q terminal deletion: report of 6 new patients and review of phenotype-breakpoint correlations in 66 individuals. Am J Med Genet A 2004;130A:331–339.

    Article  PubMed  Google Scholar 

  56. Gorski JL, Cox BA, Kyine M, Uhlmann W, Glover TW. Terminal deletion of the long arm of chromosome 2 in a mildly dysmorphic hypotonic infant with karyotype 46,XY,del(2)(q37). Am J Med Genet 1989;32:350–352.

    Article  PubMed  CAS  Google Scholar 

  57. Galasso C, Lo-Castro A, Lalli C, Nardone AM, Gullotta F, Curatolo P. Deletion 2q37: an identifiable clinical syndrome with mental retardation and autism. J Child Neurol 2008;23:802–806.

    Article  PubMed  Google Scholar 

  58. Wassink TH, Piven J, Vieland VJ, Jenkins L, Frantz R, Bartlett CW, et al. Evaluation of the chromosome 2q37.3 gene CENTG2 as an autism susceptibility gene. Am J Med Genet B Neuropsychiatr Genet 2005;136B:36–44.

    Article  PubMed  Google Scholar 

  59. Lo-Castro A, Giana G, Fichera M, Castiglia L, Grillo L, Musumeci SA, et al. Deletion 2p25.2: a cryptic chromosome abnormality in a patient with autism and mental retardation detected using aCGH. Eur J Med Genet 2009;52:67–70.

    Article  PubMed  Google Scholar 

  60. Yan J, Oliveira G, Coutinho A, Yang C, Feng J, Katz C, et al. Analysis of the neuroligin 3 and 4 genes in autism and other neuropsychiatric patients. Mol Psychiatry 2005;10:329–332.

    Article  PubMed  CAS  Google Scholar 

  61. Lawson-Yuen A, Saldivar JS, Sommer S, Picker J. Familial deletion within NLGN4 associated with autism and Tourette syndrome. Eur J Hum Genet 2008;16:614–618.

    Article  PubMed  CAS  Google Scholar 

  62. Moessner R, Marshall CR, Sutcliffe JS, Skaug J, Pinto D, Vincent J, et al. Contribution of SHANK3 mutations to autism spectrum disorder. Am J Hum Genet 2007;81:1289–1297.

    Article  PubMed  CAS  Google Scholar 

  63. Sadakata T, Washida M, Furuichi T. Alternative splicing variations in mouse CAPS2: differential expression and functional properties of splicing variants. BMC Neurosci 2007;8:25.

    Article  PubMed  CAS  Google Scholar 

  64. Yrigollen CM, Han SS, Kochetkova A, Babitz T, Chang JT, Volkmar FR, et al. Genes controlling affiliative behavior as candidate genes for autism. Biol Psychiatry 2008;63:911–916.

    Article  PubMed  CAS  Google Scholar 

  65. Buttenschøn HN, Lauritsen MB, El Daoud A, Hollegaard M, Jorgensen M, Tvedegaard K, et al. A population-based association study of glutamate decarboxylase 1 as a candidate gene for autism. J Neural Transm 2009;116:381–388.

    Article  PubMed  CAS  Google Scholar 

  66. Zhiling Y, Fujita E, Tanabe Y, Yamagata T, Momoi T, Momoi MY. Mutations in the gene encoding CADM1 are associated with autism spectrum disorder. Biochem Biophys Res Commun 2008;377:926–929.

    Article  PubMed  CAS  Google Scholar 

  67. Glancy M, Barnicoat A, Vijeratnam R, de Souza S, Gilmore J, Huang S, et al. Transmitted duplication of 8p23.1-8p23.2 associated with speech delay, autism and learning difficulties. Eur J Hum Genet 2009;17:37–43.

    Article  PubMed  CAS  Google Scholar 

  68. Buxbaum JD, Cai G, Chaste P, Nygren G, Goldsmith J, Reichert J, et al. Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. Am J Med Genet B Neuropsychiatr Genet 2007;144B:484–491.

    Article  PubMed  CAS  Google Scholar 

  69. Herman GE, Butter E, Enrile B, Pastore M, Prior TW, Sommer A. Increasing knowledge of PTEN germline mutations: two additional patients with autism and macrocephaly. Am J Med Genet A 2007;143:589–593.

    PubMed  Google Scholar 

  70. Tuchman R, Rapin I. Epilepsy in autism. Lancet Neurol 2002;1:352–358.

    Article  PubMed  Google Scholar 

  71. Tuchman R, Moshe SL, Rapin I. Convulsing toward the pathophysiology of autism. Brain Dev 2009;31:95–103.

    Article  PubMed  Google Scholar 

  72. Canitano R. Epilepsy in autism spectrum disorders. Eur Child Adolesc Psychiatry 2007;16:61–66.

    Article  PubMed  Google Scholar 

  73. Holmes GL. Influence of brain development on status epilepticus. Epilepsia 2007;48Suppl 8:19–20.

    Article  PubMed  Google Scholar 

  74. Smith MC, Hoeppner TJ. Epileptic encephalopathy of late childhood: Landau-Kleffner syndrome and the syndrome of continuous spikes and waves during slow-wave sleep. J Clin Neurophysiol 2003;20:462–472.

    Article  PubMed  Google Scholar 

  75. Kayaalp L, Dervent A, Saltik S, Uluduz D, Kayaalp IV, Demirbilek V, et al. EEG abnormalities in West syndrome: correlation with the emergence of autistic features. Brain Dev 2007;29:336–345.

    Article  PubMed  Google Scholar 

  76. Saemundsen E, Ludvigsson P, Rafnsson V. Autism spectrum disorders in children with a history of infantile spasms: a population-based study. J Child Neurol 2007;22:1102–1107.

    Article  PubMed  Google Scholar 

  77. Saemundsen E, Ludvigsson P, Rafnsson V. Risk of autism spectrum disorders after infantile spasms: a population-based study nested in a cohort with seizures in the first year of life. Epilepsia 2008;49:1865–1870.

    Article  PubMed  Google Scholar 

  78. Lewine JD, Andrews R, Chez M, Patil AA, Devinsky O, Smith M, et al. Magnetoencephalographic patterns of epileptiform activity in children with regressive autism spectrum disorders. Pediatrics 1999;104:405–418.

    Article  PubMed  CAS  Google Scholar 

  79. Krey JF, Dolmetsch RE. Molecular mechanisms of autism: a possible role for Ca2+ signaling. Curr Opin Neurobiol 2007;17:112–119.

    Article  PubMed  CAS  Google Scholar 

  80. Manzi B, Loizzo AL, Giana G, Curatolo P. Autism and metabolic diseases. J Child Neurol 2008;23:307–314.

    Article  PubMed  Google Scholar 

  81. Huttenlocher PR. The neuropathology of phenylketonuria: human and animal studies. Eur J Pediatr 2000;159Suppl 2: S102–106.

    Article  PubMed  Google Scholar 

  82. Diamond A. Evidence for the importance of dopamine for prefrontal cortex functions early in life. Philos Trans R Soc Lond B Biol Sci 1996;351:1483–1493; discussion 1494.

    Article  PubMed  CAS  Google Scholar 

  83. Bayou N, M’Rad R, Belhaj A, Daoud H, Zemni R, Briault S, et al. The creatine transporter gene paralogous at 16p11.2 is expressed in human brain. Comp Funct Genomics 2008:609684.

  84. Cohen D, Pichard N, Tordjman S, Baumann C, Burglen L, Excoffier E, et al. Specific genetic disorders and autism: clinical contribution towards their identification. J Autism Dev Disord 2005;35:103–116.

    Article  PubMed  Google Scholar 

  85. Newmeyer A, deGrauw T, Clark J, Chuck G, Salomons G. Screening of male patients with autism spectrum disorder for creatine transporter deficiency. Neuropediatrics 2007;38:310–312.

    Article  PubMed  CAS  Google Scholar 

  86. Okada M, Kawata Y, Murakami T, Wada K, Mizuno K, Kaneko S. Interaction between purinoceptor subtypes on hippocampal serotonergic transmission using in vivo microdialysis. Neuropharmacology 1999;38:707–715.

    Article  PubMed  CAS  Google Scholar 

  87. Segurado R, Conroy J, Meally E, Fitzgerald M, Gill M, Gallagher L. Confirmation of association between autism and the mitochondrial aspartate/glutamate carrier SLC25A12 gene on chromosome 2q31. Am J Psychiatry 2005;162:2182–2184.

    Article  PubMed  Google Scholar 

  88. Tsao CY, Mendell JR. Autistic disorder in 2 children with mitochondrial disorders. J Child Neurol 2007;22:1121–1123.

    Article  PubMed  Google Scholar 

  89. Lepagnol-Bestel AM, Maussion G, Boda B, Cardona A, Iwayama Y, Delezoide AL, et al. SLC25A12 expression is associated with neurite outgrowth and is upregulated in the prefrontal cortex of autistic subjects. Mol Psychiatry 2008;13:385–397.

    Article  PubMed  CAS  Google Scholar 

  90. Palmieri L, Papaleo V, Porcelli V, Scarcia P, Gaita L, Sacco R, et al. Altered calcium homeostasis in autism-spectrum disorders: evidence from biochemical and genetic studies of the mitochondrial aspartate/glutamate carrier AGC1. Mol Psychiatry 2008. doi: 10.1038/mp.2008.63

  91. Kayser MA. Inherited metabolic diseases in neurodevelopmental and neurobehavioral disorders. Semin Pediatr Neurol 2008;15:127–131.

    Article  PubMed  Google Scholar 

  92. Baieli S, Pavone L, Meli C, Fiumara A, Coleman M. Autism and phenylketonuria. J Autism Dev Disord 2003;33:201–204.

    Article  PubMed  Google Scholar 

  93. Lowe TL, Tanaka K, Seashore MR, Young JG, Cohen DJ. Detection of phenylketonuria in autistic and psychotic children. JAMA 1980;243:126–128.

    Article  PubMed  CAS  Google Scholar 

  94. Ciardo F, Salerno C, Curatolo P. Neurologic aspects of adenylosuccinate lyase deficiency. J Child Neurol 2001;16:301–308.

    PubMed  CAS  Google Scholar 

  95. Jira PE, Wevers RA, de Jong J, Rubio-Gozalbo E, Janssen-Zijlstra FS, van Heyst AF, et al. Simvastatin. A new therapeutic approach for Smith-Lemli-Opitz syndrome. J Lipid Res 2000;41:1339–1346.

    PubMed  CAS  Google Scholar 

  96. Sikora DM, Pettit-Kekel K, Penfield J, Merkens LS, Steiner RD. The near universal presence of autism spectrum disorders in children with Smith-Lemli-Opitz syndrome. Am J Med Genet A 2006;140:1511–1518.

    PubMed  Google Scholar 

  97. Arias-Dimas A, Vilaseca MA, Artuch R, Ribes A, Campistol J. Diagnosis and treatment of brain creatine deficiency syndromes. Rev Neurol 2006;43:302–308.

    PubMed  CAS  Google Scholar 

  98. Bauman ML, Kemper TL. Neuroanatomic observations of the brain in autism: a review and future directions. Int J Dev Neurosci 2005;23:183–187.

    Article  PubMed  Google Scholar 

  99. Pardo CA, Eberhart CG. The neurobiology of autism. Brain Pathol 2007;17:434–447.

    Article  PubMed  CAS  Google Scholar 

  100. Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet 2008;9:341–355.

    Article  PubMed  CAS  Google Scholar 

  101. Battaglia A, Bonaglia MC. The yield of subtelomeric FISH analysis in the evaluation of autistic spectrum disorders. Am J Med Genet C Semin Med Genet 2006;142C:8–12.

    Article  PubMed  Google Scholar 

  102. Schaefer GB, Mendelsohn NJ. Genetics evaluation for the etiologic diagnosis of autism spectrum disorders. Genet Med 2008;10:4–12.

    Article  PubMed  Google Scholar 

  103. Lintas C, Persico AM. Autistic phenotypes and genetic testing: state-of-the-art for the clinical geneticist. J Med Genet 2009;46:1–8.

    Article  PubMed  CAS  Google Scholar 

  104. Christian SL, Brune CW, Sudi J, Kumar RA, Liu S, Karamohamed S, et al. Novel submicroscopic chromosomal abnormalities detected in autism spectrum disorder. Biol Psychiatry 2008;63:1111–1117.

    Article  PubMed  CAS  Google Scholar 

  105. Szatmari P, Paterson AD, Zwaigenbaum L, Roberts W, Brian J, Liu XQ, et al. Mapping autism risk loci using genetic linkage and chromosomal rearrangements. Nat Genet 2007;39:319–328.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Curatolo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benvenuto, A., Moavero, R., Alessandrelli, R. et al. Syndromic autism: causes and pathogenetic pathways. World J Pediatr 5, 169–176 (2009). https://doi.org/10.1007/s12519-009-0033-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12519-009-0033-2

Key words

Navigation