Skip to main content

Advertisement

Log in

The Plexiform Neurofibroma Microenvironment

  • Review Article
  • Published:
Cancer Microenvironment

Abstract

Dynamic interactions between tumorigenic cells and surrounding cells, including immunomodulatory hematopoietic cells, can dictate tumor initiation, progression, and transformation. Hematopoietic-stromal interactions underpin the plexiform neurofibroma, a debilitating tumor arising in individuals afflicted with Neurofibromatosis type 1 (NF1), a common genetic disorder resulting from mutations in the NF1 tumor suppressor gene. At the tissue level, plexiform neurofibromas demonstrate a complex microenvironment composed of Schwann cells, fibroblasts, perineural cells, mast cells, secreted collagen, and blood vessels. At the cellular level, specific interactions between these cells engender tumor initiation and progression. In this microenvironment hypothesis, tumorigenic Schwann cells secrete pathological concentrations of stem cell factor, which recruit c-kit expressing mast cells. In turn, activated mast cells release inflammatory effectors stimulating the tumorigenic Schwann cells and their supporting fibroblasts and blood vessels, thus promoting tumor expansion in a feed-forward loop. Bone marrow transplantation experiments in plexiform neurofibroma mouse models have shown that tumorigenesis requires Nf1 haploinsufficiency in the hematopoietic compartment, suggesting that tumor microenvironments can depend on intricate interactions at both cellular and genetic levels. Overall, our continued understanding of critical tumor-stromal interactions will illuminate novel therapeutic targets, as shown by the first-ever successful medical treatment of a plexiform neurofibroma by targeted inhibition of the stem cell factor/c-kit axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Wallace MR et al (1990) Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. Science 249(4965):181–186

    Article  PubMed  CAS  Google Scholar 

  2. Morris M, Fox WS (1908) Von Recklinghausen’s Disease. Proc R Soc Med 1(Dermatol Sect):16–17

    PubMed  CAS  Google Scholar 

  3. Martin GA et al (1990) The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21. Cell 63(4):843–849

    Article  PubMed  CAS  Google Scholar 

  4. Ballester R et al (1990) The NF1 locus encodes a protein functionally related to mammalian GAP and yeast IRA proteins. Cell 63(4):851–859

    Article  PubMed  CAS  Google Scholar 

  5. Hiatt KK et al (2001) Neurofibromin GTPase-activating protein-related domains restore normal growth in Nf1−/− cells. J Biol Chem 276(10):7240–7245

    Article  PubMed  CAS  Google Scholar 

  6. Bader JL (1986) Neurofibromatosis and cancer. Ann N Y Acad Sci 486:57–65

    Article  PubMed  CAS  Google Scholar 

  7. Friedman J et al (1999) Neurofibromatosis: phenotype, natural history, and pathogenesis, 3rd edn. The Johns Hopkins University Press, Baltimore

    Google Scholar 

  8. Korf BR (1999) Plexiform neurofibromas. Am J Med Genet 89(1):31–37

    Article  PubMed  CAS  Google Scholar 

  9. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867

    Article  PubMed  CAS  Google Scholar 

  10. Coussens LM, Werb Z (2001) Inflammatory cells and cancer: think different! J Exp Med 193(6):F23–F26

    Article  PubMed  CAS  Google Scholar 

  11. Kacinski BM (1995) CSF-1 and its receptor in ovarian, endometrial and breast cancer. Ann Med 27(1):79–85

    Article  PubMed  CAS  Google Scholar 

  12. Bergers G et al (2000) Matrix metalloproteinase-9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2(10):737–744

    Article  PubMed  CAS  Google Scholar 

  13. Coussens LM et al (1999) Inflammatory mast cells up-regulate angiogenesis during squamous epithelial carcinogenesis. Genes Dev 13:1382–1397

    Article  PubMed  CAS  Google Scholar 

  14. Franco CB et al (2010) Distinguishing mast cell and granulocyte differentiation at the single-cell level. Cell Stem Cell 6(4):361–368

    Article  PubMed  CAS  Google Scholar 

  15. Galli SJ, Maurer M, Lantz CS (1999) Mast cells as sentinels of innate immunity. Curr Opin Immunol 11(1):53–59

    Article  PubMed  CAS  Google Scholar 

  16. Theoharides TC, Conti P (2004) Mast cells: the Jekyll and Hyde of tumor growth. Trends Immunol 25(5):235–241

    Article  PubMed  CAS  Google Scholar 

  17. Metz M et al (2006) Mast cells can enhance resistance to snake and honeybee venoms. Science 313(5786):526–530

    Article  PubMed  CAS  Google Scholar 

  18. Zhu Y et al (2002) Neurofibromas in NF1: Schwann cell origin and role of tumor environment. Science 296(5569):920–922

    Article  PubMed  CAS  Google Scholar 

  19. Viskochil DH (2003) It takes two to tango: mast cell and Schwann cell interactions in neurofibromas. J Clin Invest 112(12):1791–1793

    PubMed  CAS  Google Scholar 

  20. Yang FC et al (2003) Neurofibromin-deficient Schwann cells secrete a potent migratory stimulus for Nf1+/− mast cells. J Clin Invest 112(12):1851–1861

    Article  PubMed  CAS  Google Scholar 

  21. Hirota S et al (1993) Possible involvement of c-kit Receptor and its ligand in increase of mast cells in neurofibroma tissues. Arch Pathol Lab Med 117:996–999

    PubMed  CAS  Google Scholar 

  22. Staser K, Yang FC, Clapp DW (2010) Mast cells and the neurofibroma microenvironment. Blood 116(2):157–164

    Article  PubMed  CAS  Google Scholar 

  23. Staser K, Yang FC, Clapp DW (2012) Pathogenesis of plexiform neurofibroma: tumor-stromal/hematopoietic interactions in tumor progression. Annu Rev Pathol 7:469–495

    Article  PubMed  CAS  Google Scholar 

  24. Staser K, Yang FC, Clapp DW (2010) Plexiform neurofibroma genesis: questions of Nf1 gene dose and hyperactive mast cells. Curr Opin Hematol 17(4):287–293

    Article  PubMed  Google Scholar 

  25. Yang FC et al (2008) Nf1-dependent tumors require a microenvironment containing Nf1+/−− and c-kit-dependent bone marrow. Cell 135(3):437–448

    Article  PubMed  CAS  Google Scholar 

  26. Greggio H (1911) Les cellules granuleuses (Mastzellen) dans les tissus normaux et dans certaines maladies chirurgicales. Arch Med Exp 23:323–375

    Google Scholar 

  27. Pineda A (1965) Mast cells–their presence and ultrastructural characteristics in peripheral nerve tumors. Arch Neurol 13(4):372–382

    Article  PubMed  CAS  Google Scholar 

  28. Gamble HJ, Goldby S (1961) Mast cells in peripheral nerve trunks. Nature 189:766–767

    Article  PubMed  CAS  Google Scholar 

  29. Olsson Y (1971) Mast cells in human peripheral nerve. Acta Neurol Scand 47(3):357–368

    Article  PubMed  CAS  Google Scholar 

  30. Isaacson P (1976) Mast cells in benign nerve sheath tumours. J Pathol 119(4):193–196

    Article  PubMed  CAS  Google Scholar 

  31. Baroni C (1964) On the relationship of mast cells to various soft tissue tumours. Br J Cancer 18:686–691

    Article  PubMed  CAS  Google Scholar 

  32. Nurnberger M, Moll I (1994) Semiquantitative aspects of mast cells in normal skin and in neurofibromas of neurofibromatosis types 1 and 5. Dermatology 188(4):296–299

    Article  PubMed  CAS  Google Scholar 

  33. Riccardi VM (1981) Cutaneous manifestation of neurofibromatosis: cellular interaction, pigmentation, and mast cells. Birth Defects Orig Artic Ser 17(2):129–145

    PubMed  CAS  Google Scholar 

  34. Riccardi VM (1987) Mast-cell stabilization to decrease neurofibroma growth. Preliminary experience with ketotifen. Arch Dermatol 123(8):1011–1016

    Article  PubMed  CAS  Google Scholar 

  35. Riccardi VM (1993) A controlled multiphase trial of ketotifen to minimize neurofibroma-associated pain and itching. Arch Dermatol 129(5):577–581

    Article  PubMed  CAS  Google Scholar 

  36. Galli SJ, Tsai M, Wershil BK (1993) The c-kit receptor, stem cell factor, and mast cells. What each is teaching us about the others. Am J Pathol 142(4):965–974

    PubMed  CAS  Google Scholar 

  37. Chen S et al (2010) Nf1−/− Schwann cell-conditioned medium modulates mast cell degranulation by c-Kit-mediated hyperactivation of phosphatidylinositol 3-kinase. Am J Pathol 177(6):3125–3132

    Google Scholar 

  38. Yang FC et al (2006) Nf1+/− mast cells induce neurofibroma like phenotypes through secreted TGF-beta signaling. Hum Mol Genet 15(16):2421–2437

    Article  PubMed  CAS  Google Scholar 

  39. Li F et al (2006) Neurofibromin is a novel regulator of RAS-induced signals in primary vascular smooth muscle cells. Hum Mol Genet 15(11):1921–1930

    Article  PubMed  CAS  Google Scholar 

  40. Munchhof AM et al (2006) Neurofibroma-associated growth factors activate a distinct signaling network to alter the function of neurofibromin-deficient endothelial cells. Hum Mol Genet 15(11):1858–1869

    Article  PubMed  CAS  Google Scholar 

  41. McDaniel AS et al (2008) Pak1 regulates multiple c-Kit mediated Ras-MAPK gain-in-function phenotypes in Nf1+/− mast cells. Blood 112(12):4646–4654

    Article  PubMed  CAS  Google Scholar 

  42. Ingram DA et al (2000) Genetic and biochemical evidence that haploinsufficiency of the Nf1 tumor suppressor gene modulates melanocyte and mast cell fates in vivo. J Exp Med 191(1):181–188

    Article  PubMed  CAS  Google Scholar 

  43. Khalaf WF et al (2007) K-ras is critical for modulating multiple c-kit-mediated cellular functions in wild-type and Nf1+/− mast cells. J Immunol 178(4):2527–2534

    PubMed  CAS  Google Scholar 

  44. Jaakkola S et al (1989) Type 1 neurofibromatosis: selective expression of extracellular matrix genes by Schwann cells, perineurial cells, and fibroblasts in mixed cultures. J Clin Invest 84(1):253–261

    Article  PubMed  CAS  Google Scholar 

  45. Druker BJ (2008) Translation of the Philadelphia chromosome into therapy for CML. Blood 112(13):4808–4817

    Article  PubMed  CAS  Google Scholar 

  46. Wu J et al (2008) Plexiform and dermal neurofibromas and pigmentation are caused by Nf1 loss in desert hedgehog-expressing cells. Cancer Cell 13(2):105–116

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng-Chun Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, FC., Staser, K. & Clapp, D.W. The Plexiform Neurofibroma Microenvironment. Cancer Microenvironment 5, 307–310 (2012). https://doi.org/10.1007/s12307-012-0115-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12307-012-0115-x

Keywords

Navigation