Skip to main content

Advertisement

Log in

Vascular Pathways of Testosterone: Clinical Implications

  • Review Article
  • Published:
Journal of Cardiovascular Translational Research Aims and scope Submit manuscript

Abstract

Cardiovascular diseases (CVD) are one of the leading causes of death worldwide. Testosterone (T) is an important sex hormone that triggers several genomic and non-genomic pathways, leading to improvements of several cardiovascular risk factors and quality of life in men. At the vascular level, the key effect of T is the vasorelaxation. This review discusses the molecular pathways and clinical implications of T in the vascular system. Firstly, the mechanisms involved in the T vasodilator effect will be presented. Then, it will be discussed the association of T with the main risks for CVD, namely metabolic syndrome, type 2 diabetes mellitus, obesity, atherosclerosis, dyslipidaemia and hypertension. Several studies have shown a correlation between low T levels and an increased prevalence of several CVD. These observations suggest that T has beneficial effects on the cardiovascular system and that testosterone replacement therapy may become a therapeutic reality for some of these disorders.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kaushik, M., Sontineni, S. P., & Hunter, C. (2010). Cardiovascular disease and androgens: A review. International Journal of Cardiology, 142(1), 8–14. https://doi.org/10.1016/j.ijcard.2009.10.033.

    Article  PubMed  Google Scholar 

  2. Michels, G., Er, F., Eicks, M., Herzig, S., & Hoppe, U. C. (2006). Long-term and immediate effect of testosterone on single T-type calcium channel in neonatal rat cardiomyocytes. Endocrinology, 147(11), 5160–5169. https://doi.org/10.1210/en.2006-0186.

    Article  CAS  PubMed  Google Scholar 

  3. Elagizi, A., Kohler, T. S., & Lavie, C. J. (2018). Testosterone and cardiovascular health. Mayo Clinic Proceedings, 93(1), 83–100. https://doi.org/10.1016/j.mayocp.2017.11.006.

    Article  CAS  PubMed  Google Scholar 

  4. Yeap, B. B., Page, S. T., & Grossmann, M. (2018). Testosterone treatment in older men: Clinical implications and unresolved questions from the testosterone trials. The Lancet Diabetes and Endocrinology, 6(8), 659–672. https://doi.org/10.1016/S2213-8587(17)30416-3.

    Article  CAS  PubMed  Google Scholar 

  5. Ruehlmann, D. O., & Mann, G. E. (2000). Rapid non-genomic vasodilator actions of oestrogens and sex steroids. Current Medicinal Chemistry, 7(5), 533–541. https://doi.org/10.2174/0929867003375038.

    Article  CAS  PubMed  Google Scholar 

  6. Longcope, C., Kato, T., & Horton, R. (1969). Conversion of blood androgens to estrogens in normal adult men and women. The Journal of Clinical Investigation, 48(12), 2191–2201. https://doi.org/10.1172/JCI106185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Rainey, W. E., & Nakamura, Y. (2008). Regulation of the adrenal androgen biosynthesis. The Journal of Steroid Biochemistry and Molecular Biology, 108(3–5), 281–286. https://doi.org/10.1016/j.jsbmb.2007.09.015.

    Article  CAS  PubMed  Google Scholar 

  8. Hakim, C., Padmanabhan, V., & Vyas, A. K. (2017). Gestational hyperandrogenism in developmental programming. Endocrinology, 158(2), 199–212. https://doi.org/10.1210/en.2016-1801.

    Article  CAS  PubMed  Google Scholar 

  9. Yildiz, O., & Seyrek, M. (2007). Vasodilating mechanisms of testosterone. Experimental and Clinical Endocrinology & Diabetes, 115(1), 1–6. https://doi.org/10.1055/s-2007-949657.

    Article  CAS  Google Scholar 

  10. Lucas-Herald, A. K., Alves-Lopes, R., Montezano, A. C., Ahmed, S. F., & Touyz, R. M. (2017). Genomic and non-genomic effects of androgens in the cardiovascular system: Clinical implications. Clinical Science (London, England), 131(13), 1405–1418. https://doi.org/10.1042/CS20170090.

    Article  CAS  Google Scholar 

  11. Bowles, D. K., Maddali, K. K., Ganjam, V. K., Rubin, L. J., Tharp, D. L., Turk, J. R., et al. (2004). Endogenous testosterone increases L-type Ca2+ channel expression in porcine coronary smooth muscle. American Journal of Physiology. Heart and Circulatory Physiology, 287(5), H2091–H2098. https://doi.org/10.1152/ajpheart.00258.2004.

    Article  CAS  PubMed  Google Scholar 

  12. Zhou, P., Fu, L., Pan, Z., Ma, D., Zhang, Y., Qu, F., et al. (2008). Testosterone deprivation by castration impairs expression of voltage-dependent potassium channels in rat aorta. European Journal of Pharmacology, 593(1–3), 87–91. https://doi.org/10.1016/j.ejphar.2008.07.014.

    Article  CAS  PubMed  Google Scholar 

  13. Oka, M., Karoor, V., Homma, N., Nagaoka, T., Sakao, E., Golembeski, S. M., et al. (2007). Dehydroepiandrosterone upregulates soluble guanylate cyclase and inhibits hypoxic pulmonary hypertension. Cardiovascular Research, 74(3), 377–387. https://doi.org/10.1016/j.cardiores.2007.01.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Er, F., Gassanov, N., Brandt, M. C., Madershahian, N., & Hoppe, U. C. (2009). Impact of dihydrotestosterone on L-type calcium channels in human ventricular cardiomyocytes. Endocrine Research, 34(3), 59–67. https://doi.org/10.1080/07435800903136953.

    Article  CAS  PubMed  Google Scholar 

  15. Saldanha, P. A., Cairrao, E., Maia, C. J., & Verde, I. (2013). Long- and short-term effects of androgens in human umbilical artery smooth muscle. Clinical and Experimental Pharmacology and Physiology, 40, 181–189. https://doi.org/10.1111/1440-1681.12047.

    Article  CAS  PubMed  Google Scholar 

  16. Yu, J., Akishita, M., Eto, M., Koizumi, H., Hashimoto, R., Ogawa, S., et al. (2012). Src kinase-mediates androgen receptor-dependent non-genomic activation of signaling cascade leading to endothelial nitric oxide synthase. Biochemical and Biophysical Research Communications, 424(3), 538–543. https://doi.org/10.1016/j.bbrc.2012.06.151.

    Article  CAS  PubMed  Google Scholar 

  17. Steinsapir, J., Socci, R., & Reinach, P. (1991). Effects of androgen on intracellular calcium of LNCaP cells. Biochemical and Biophysical Research Communications, 179(1), 90–96. https://doi.org/10.1016/0006-291x(91)91338-d.

    Article  CAS  PubMed  Google Scholar 

  18. Murphy, J. G., & Khalil, R. A. (1999). Decreased [Ca2+]i during inhibition of coronary smooth muscle contraction by 17beta-estradiol, progesterone, and testosterone. The Journal of Pharmacology and Experimental Therapeutics, 291(1), 44–52.

    CAS  PubMed  Google Scholar 

  19. Ding, A. Q., & Stallone, J. N. (2001). Testosterone-induced relaxation of rat aorta is androgen structure specific and involves K+ channel activation. Journal of Applied Physiology, 91(6), 2742–2750. https://doi.org/10.1152/jappl.2001.91.6.2742.

    Article  CAS  PubMed  Google Scholar 

  20. Jones, R. D., English, K. M., Pugh, P. J., Morice, A. H., Jones, T. H., & Channer, K. S. (2002). Pulmonary vasodilatory action of testosterone: Evidence of a calcium antagonistic action. Journal of Cardiovascular Pharmacology, 39(6), 814–823. https://doi.org/10.1097/00005344-200206000-00006.

    Article  CAS  PubMed  Google Scholar 

  21. Cairrao, E., Alvarez, E., Santos-Silva, A. J., & Verde, I. (2008). Potassium channels are involved in testosterone-induced vasorelaxation of human umbilical artery. Naunyn-Schmiedeberg's Archives of Pharmacology, 376(5), 375–383. https://doi.org/10.1007/s00210-007-0213-3.

    Article  CAS  PubMed  Google Scholar 

  22. Teoh, H., Quan, A., Leung, S. W., & Man, R. Y. (2000). Differential effects of 17beta-estradiol and testosterone on the contractile responses of porcine coronary arteries. British Journal of Pharmacology, 129(7), 1301–1308. https://doi.org/10.1038/sj.bjp.0703164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Thomas, P., Converse, A., & Berg, H. A. (2018). ZIP9, a novel membrane androgen receptor and zinc transporter protein. General and Comparative Endocrinology, 257, 130–136. https://doi.org/10.1016/j.ygcen.2017.04.016.

    Article  CAS  PubMed  Google Scholar 

  24. Thomas, P. (2019). Membrane androgen receptors unrelated to nuclear steroid receptors. Endocrinology, 160(4), 772–781. https://doi.org/10.1210/en.2018-00987.

    Article  PubMed  Google Scholar 

  25. Wang, C., Liu, Y., & Cao, J. M. (2014). G protein-coupled receptors: Extranuclear mediators for the non-genomic actions of steroids. International Journal of Molecular Sciences, 15(9), 15412–15425. https://doi.org/10.3390/ijms150915412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hotta, Y., Kataoka, T., & Kimura, K. (2019). Testosterone deficiency and endothelial dysfunction: Nitric oxide, asymmetric dimethylarginine, and endothelial progenitor cells. Sexual Medicine Reviews. https://doi.org/10.1016/j.sxmr.2019.02.005.

    Article  Google Scholar 

  27. Higashi, Y. (2017). Lower urinary tract symptoms/benign prostatic hypertrophy and vascular function: Role of the nitric oxide-phosphodiesterase type 5-cyclic guanosine 3′,5′-monophosphate pathway. International Journal of Urology, 24(6), 412–424. https://doi.org/10.1111/iju.13336.

    Article  CAS  PubMed  Google Scholar 

  28. Crews, J. K., & Khalil, R. A. (1999). Antagonistic effects of 17 b-estradiol, progesterone, and testosterone on Ca2+ entry mechanisms of coronary vasoconstriction. Arteriosclerosis, Thrombosis, and Vascular Biology, 19(4), 1034–1040. https://doi.org/10.1161/01.ATV.19.4.1034.

    Article  CAS  PubMed  Google Scholar 

  29. Deenadayalu, V. P., White, R. E., Stallone, J. N., Gao, X., & Garcia, A. J. (2001). Testosterone relaxes coronary arteries by opening the large-conductance, calcium-activated potassium channel. The American Journal of Physiology, 281(4), H1720–H1727. https://doi.org/10.1152/ajpheart.2001.281.4.H1720.

    Article  CAS  Google Scholar 

  30. Perusquia, M., Hernandez, R., Morales, M. A., Campos, M. G., & Villalon, C. M. (1996). Role of endothelium in the vasodilating effect of progestins and androgens on the rat thoracic aorta. General Pharmacology, 27(1), 181–185. https://doi.org/10.1016/0306-3623(95)00091-7.

    Article  CAS  PubMed  Google Scholar 

  31. Ruamyod, K., Watanapa, W. B., & Shayakul, C. (2017). Testosterone rapidly increases Ca(2+)-activated K(+) currents causing hyperpolarization in human coronary artery endothelial cells. The Journal of Steroid Biochemistry and Molecular Biology, 168, 118–126. https://doi.org/10.1016/j.jsbmb.2017.02.014.

    Article  CAS  PubMed  Google Scholar 

  32. Perusquia, M., Navarrete, E., Gonzalez, L., & Villalon, C. M. (2007). The modulatory role of androgens and progestins in the induction of vasorelaxation in human umbilical artery. Life Sciences, 81(12), 993–1002. https://doi.org/10.1016/j.lfs.2007.07.024.

    Article  CAS  PubMed  Google Scholar 

  33. Yildiz, O., Seyrek, M., Un, I., Gul, H., Candemir, G., & Yildirim, V. (2005). The relationship between risk factors and testosterone-induced relaxations in human internal mammary artery. Journal of Cardiovascular Pharmacology, 45(1), 4–7. https://doi.org/10.1097/00005344-200501000-00002.

    Article  CAS  PubMed  Google Scholar 

  34. Sakamoto, K., & Kurokawa, J. (2019). Involvement of sex hormonal regulation of K(+) channels in electrophysiological and contractile functions of muscle tissues. Journal of Pharmacological Sciences, 139(4), 259–265. https://doi.org/10.1016/j.jphs.2019.02.009.

    Article  CAS  PubMed  Google Scholar 

  35. Martin de Llano, J. J., Fuertes, G., Garcia-Vicent, C., Torro, I., Fayos, J. L., & Lurbe, E. (2007). Procedure to consistently obtain endothelial and smooth muscle cell cultures from umbilical cord vessels. Translational Research, 149(1), 1–9. https://doi.org/10.1016/j.trsl.2006.07.010.

    Article  CAS  PubMed  Google Scholar 

  36. Lorigo, M., Mariana, M., Feiteiro, J., & Cairrao, E. (2018). How is the human umbilical artery regulated? The Journal of Obstetrics and Gynaecology Research. https://doi.org/10.1111/jog.13667.

    Article  Google Scholar 

  37. Jackson, W. F. (2005). Potassium channels in the peripheral microcirculation. Microcirculation, 12(1), 113–127. https://doi.org/10.1080/10739680590896072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Burg, E. D., Remillard, C. V., & Yuan, J. X. (2008). Potassium channels in the regulation of pulmonary artery smooth muscle cell proliferation and apoptosis: Pharmacotherapeutic implications. British Journal of Pharmacology, 153(Suppl 1), S99–S111. https://doi.org/10.1038/sj.bjp.0707635.

    Article  CAS  PubMed  Google Scholar 

  39. Perusquia, M., & Villalon, C. M. (1999). Possible role of Ca2+ channels in the vasodilating effect of 5-beta-dihydrotestosterone in rat aorta. European Journal of Pharmacology, 371(2–3), 169–178. https://doi.org/10.1038/sj.bjp.0707635.

    Article  CAS  PubMed  Google Scholar 

  40. Cairrao, E., Santos-Silva, A. J., & Verde, I. (2010). PKG is involved in testosterone-induced vasorelaxation of human umbilical artery. European Journal of Pharmacology, 640, 94–101. https://doi.org/10.1016/j.ejphar.2010.04.025.

    Article  CAS  PubMed  Google Scholar 

  41. Er, F., Michels, G., Brandt, M. C., Khan, I., Haase, H., Eicks, M., et al. (2007). Impact of testosterone on cardiac L-type calcium channels and Ca2+ sparks: Acute actions antagonize chronic effects. Cell Calcium, 41, 467–477. https://doi.org/10.1016/j.ceca.2006.09.003.

    Article  CAS  PubMed  Google Scholar 

  42. Harada, N. (2018). Role of androgens in energy metabolism affecting on body composition, metabolic syndrome, type 2 diabetes, cardiovascular disease, and longevity: Lessons from a meta-analysis and rodent studies. Bioscience, Biotechnology, and Biochemistry, 82(10), 1667–1682. https://doi.org/10.1080/09168451.2018.1490172.

    Article  CAS  PubMed  Google Scholar 

  43. English, K. M., Mandour, O., Steeds, R. P., Diver, M. J., Jones, T. H., & Channer, K. S. (2000). Men with coronary artery disease have lower levels of androgens than men with normal coronary angiograms. European Heart Journal, 21(11), 890–894. https://doi.org/10.1053/euhj.1999.1873.

    Article  CAS  PubMed  Google Scholar 

  44. Kelly, D. M., & Jones, T. H. (2013). Testosterone: A vascular hormone in health and disease. The Journal of Endocrinology, 217(3), R47–R71. https://doi.org/10.1530/JOE-12-0582.

    Article  CAS  PubMed  Google Scholar 

  45. Chrysant, S. G. (2018). Controversies regarding the cardiovascular effects of testosterone replacement therapy in older men. Drugs Today (Barc), 54(1), 25–34. https://doi.org/10.1358/dot.2018.54.1.2737935.

    Article  CAS  Google Scholar 

  46. Chrysant, S. G., & Chrysant, G. S. (2018). Cardiovascular benefits and risks of testosterone replacement therapy in older men with low testosterone. Hospital Practice (1995), 46(2), 47–55. https://doi.org/10.1080/21548331.2018.1445405.

    Article  Google Scholar 

  47. Gagliano-Juca, T., & Basaria, S. (2019). Testosterone replacement therapy and cardiovascular risk. Nature Reviews. Cardiology, 16(9), 555–574. https://doi.org/10.1038/s41569-019-0211-4.

    Article  PubMed  Google Scholar 

  48. Pantalone, K. M., George, J., Ji, X., Kattan, M. W., Milinovich, A., Bauman, J. M., et al. (2019). Testosterone replacement therapy and the risk of adverse cardiovascular outcomes and mortality. Basic and Clinical Andrology, 29, 5. https://doi.org/10.1186/s12610-019-0085-7.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Alberti, K. G., Eckel, R. H., Grundy, S. M., Zimmet, P. Z., Cleeman, J. I., Donato, K. A., et al. (2009). Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation, 120(16), 1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644.

    Article  CAS  Google Scholar 

  50. Armani, A., Berry, A., Cirulli, F., & Caprio, M. (2017). Molecular mechanisms underlying metabolic syndrome: The expanding role of the adipocyte. The FASEB Journal, 31(10), 4240–4255. https://doi.org/10.1096/fj.201601125RRR.

    Article  CAS  PubMed  Google Scholar 

  51. Saklayen, M. G. (2018). The global epidemic of the metabolic syndrome. Current Hypertension Reports, 20(2), 12. https://doi.org/10.1007/s11906-018-0812-z.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Yaribeygi, H., Farrokhi, F. R., Butler, A. E., & Sahebkar, A. (2019). Insulin resistance: Review of the underlying molecular mechanisms. Journal of Cellular Physiology, 234(6), 8152–8161. https://doi.org/10.1002/jcp.27603.

    Article  CAS  PubMed  Google Scholar 

  53. Corona, G., Monami, M., Rastrelli, G., Aversa, A., Tishova, Y., Saad, F., et al. (2011). Testosterone and metabolic syndrome: A meta-analysis study. The Journal of Sexual Medicine, 8(1), 272–283. https://doi.org/10.1111/j.1743-6109.2010.01991.x.

    Article  CAS  PubMed  Google Scholar 

  54. Corona, G., Rastrelli, G., & Maggi, M. (2013). Diagnosis and treatment of late-onset hypogonadism: Systematic review and meta-analysis of TRT outcomes. Best Practice & Research. Clinical Endocrinology & Metabolism, 27(4), 557–579. https://doi.org/10.1016/j.beem.2013.05.002.

    Article  CAS  Google Scholar 

  55. Brand, J. S., van der Tweel, I., Grobbee, D. E., Emmelot-Vonk, M. H., & van der Schouw, Y. T. (2011). Testosterone, sex hormone-binding globulin and the metabolic syndrome: A systematic review and meta-analysis of observational studies. International Journal of Epidemiology, 40(1), 189–207. https://doi.org/10.1093/ije/dyq158.

    Article  PubMed  Google Scholar 

  56. Brand, J. S., Rovers, M. M., Yeap, B. B., Schneider, H. J., Tuomainen, T. P., Haring, R., et al. (2014). Testosterone, sex hormone-binding globulin and the metabolic syndrome in men: An individual participant data meta-analysis of observational studies. PLoS One, 9(7), e100409. https://doi.org/10.1371/journal.pone.0100409.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Corona, G., Monami, M., Rastrelli, G., Aversa, A., Sforza, A., Lenzi, A., et al. (2011). Type 2 diabetes mellitus and testosterone: A meta-analysis study. International Journal of Andrology, 34(6 Pt 1), 528–540. https://doi.org/10.1111/j.1365-2605.2010.01117.x.

    Article  CAS  PubMed  Google Scholar 

  58. Ding, E. L., Song, Y., Malik, V. S., & Liu, S. (2006). Sex differences of endogenous sex hormones and risk of type 2 diabetes: A systematic review and meta-analysis. JAMA, 295(11), 1288–1299. https://doi.org/10.1001/jama.295.11.1288.

    Article  CAS  PubMed  Google Scholar 

  59. Rao, P. M., Kelly, D. M., & Jones, T. H. (2013). Testosterone and insulin resistance in the metabolic syndrome and T2DM in men. Nature Reviews. Endocrinology, 9(8), 479–493. https://doi.org/10.1038/nrendo.2013.122.

    Article  CAS  PubMed  Google Scholar 

  60. Wu, F. C., Tajar, A., Beynon, J. M., Pye, S. R., Silman, A. J., Finn, J. D., et al. (2010). Identification of late-onset hypogonadism in middle-aged and elderly men. The New England Journal of Medicine, 363(2), 123–135. https://doi.org/10.1056/NEJMoa0911101.

    Article  CAS  PubMed  Google Scholar 

  61. Cai, X., Tian, Y., Wu, T., Cao, C. X., Li, H., & Wang, K. J. (2014). Metabolic effects of testosterone replacement therapy on hypogonadal men with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials. Asian Journal of Andrology, 16(1), 146–152. https://doi.org/10.4103/1008-682X.122346.

    Article  CAS  PubMed  Google Scholar 

  62. Muka, T., Nano, J., Jaspers, L., Meun, C., Bramer, W. M., Hofman, A., et al. (2017). Associations of steroid sex hormones and sex hormone-binding globulin with the risk of type 2 diabetes in women: A population-based cohort study and meta-analysis. Diabetes, 66(3), 577–586. https://doi.org/10.2337/db16-0473.

    Article  CAS  PubMed  Google Scholar 

  63. Grossmann, M., Hoermann, R., Wittert, G., & Yeap, B. B. (2015). Effects of testosterone treatment on glucose metabolism and symptoms in men with type 2 diabetes and the metabolic syndrome: A systematic review and meta-analysis of randomized controlled clinical trials. Clinical Endocrinology, 83(3), 344–351. https://doi.org/10.1111/cen.12664.

    Article  CAS  PubMed  Google Scholar 

  64. Fruh, S. M. (2017). Obesity: Risk factors, complications, and strategies for sustainable long-term weight management. Journal of the American Association of Nurse Practitioners, 29(S1), S3–S14. https://doi.org/10.1002/2327-6924.12510.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Benomar, Y., & Taouis, M. (2019). Molecular mechanisms underlying obesity-induced hypothalamic inflammation and insulin resistance: Pivotal role of resistin/TLR4 pathways. Front Endocrinol (Lausanne), 10, 140. https://doi.org/10.3389/fendo.2019.00140.

    Article  Google Scholar 

  66. Traish, A. M., Guay, A., Feeley, R., & Saad, F. (2009). The dark side of testosterone deficiency: I. Metabolic syndrome and erectile dysfunction. Journal of Andrology, 30(1), 10–22. https://doi.org/10.2164/jandrol.108.005215.

    Article  CAS  PubMed  Google Scholar 

  67. Bekaert, M., Van Nieuwenhove, Y., Calders, P., Cuvelier, C. A., Batens, A. H., Kaufman, J. M., et al. (2015). Determinants of testosterone levels in human male obesity. Endocrine, 50(1), 202–211. https://doi.org/10.1007/s12020-015-0563-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Kovac, J. R., Pastuszak, A. W., Lamb, D. J., & Lipshultz, L. I. (2014). Testosterone supplementation therapy in the treatment of patients with metabolic syndrome. Postgraduate Medicine, 126(7), 149–156. https://doi.org/10.3810/pgm.2014.11.2843.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Bianchi, V. E., & Locatelli, V. (2018). Testosterone a key factor in gender related metabolic syndrome. Obesity Reviews, 19(4), 557–575. https://doi.org/10.1111/obr.12633.

    Article  CAS  PubMed  Google Scholar 

  70. Kelly, D. M., & Jones, T. H. (2015). Testosterone and obesity. Obesity Reviews, 16(7), 581–606. https://doi.org/10.1111/obr.12282.

    Article  CAS  PubMed  Google Scholar 

  71. Chen, R. Y., Wittert, G. A., & Andrews, G. R. (2006). Relative androgen deficiency in relation to obesity and metabolic status in older men. Diabetes, Obesity & Metabolism, 8(4), 429–435. https://doi.org/10.1111/j.1463-1326.2005.00532.x.

    Article  CAS  Google Scholar 

  72. Derby, C. A., Zilber, S., Brambilla, D., Morales, K. H., & McKinlay, J. B. (2006). Body mass index, waist circumference and waist to hip ratio and change in sex steroid hormones: The Massachusetts male ageing study. Clinical Endocrinology, 65(1), 125–131. https://doi.org/10.1111/j.1365-2265.2006.02560.x.

    Article  CAS  PubMed  Google Scholar 

  73. Kaukua, J., Pekkarinen, T., Sane, T., & Mustajoki, P. (2003). Sex hormones and sexual function in obese men losing weight. Obesity Research, 11(6), 689–694. https://doi.org/10.1038/oby.2003.98.

    Article  CAS  PubMed  Google Scholar 

  74. Niskanen, L., Laaksonen, D. E., Punnonen, K., Mustajoki, P., Kaukua, J., & Rissanen, A. (2004). Changes in sex hormone-binding globulin and testosterone during weight loss and weight maintenance in abdominally obese men with the metabolic syndrome. Diabetes, Obesity & Metabolism, 6(3), 208–215. https://doi.org/10.1111/j.1462-8902.2004.00335.x.

    Article  CAS  Google Scholar 

  75. Camacho, E. M., Huhtaniemi, I. T., O'Neill, T. W., Finn, J. D., Pye, S. R., Lee, D. M., et al. (2013). Age-associated changes in hypothalamic-pituitary-testicular function in middle-aged and older men are modified by weight change and lifestyle factors: Longitudinal results from the European male ageing study. European Journal of Endocrinology, 168(3), 445–455. https://doi.org/10.1530/EJE-12-0890.

    Article  CAS  PubMed  Google Scholar 

  76. Cunningham, G. R. (2015). Testosterone and metabolic syndrome. Asian Journal of Andrology, 17(2), 192–196. https://doi.org/10.4103/1008-682X.148068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Zhao, J., Zhai, L., Liu, Z., Wu, S., & Xu, L. (2014). Leptin level and oxidative stress contribute to obesity-induced low testosterone in murine testicular tissue. Oxidative Medicine and Cellular Longevity, 2014, 190945. https://doi.org/10.1155/2014/190945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Isidori, A. M., Caprio, M., Strollo, F., Moretti, C., Frajese, G., Isidori, A., et al. (1999). Leptin and androgens in male obesity: Evidence for leptin contribution to reduced androgen levels. The Journal of Clinical Endocrinology and Metabolism, 84(10), 3673–3680. https://doi.org/10.1210/jcem.84.10.6082.

    Article  CAS  PubMed  Google Scholar 

  79. Yi, X., Gao, H., Chen, D., Tang, D., Huang, W., Li, T., et al. (2017). Effects of obesity and exercise on testicular leptin signal transduction and testosterone biosynthesis in male mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 312(4), R501–R510. https://doi.org/10.1152/ajpregu.00405.2016.

    Article  PubMed  Google Scholar 

  80. Pitteloud, N., Hardin, M., Dwyer, A. A., Valassi, E., Yialamas, M., Elahi, D., et al. (2005). Increasing insulin resistance is associated with a decrease in Leydig cell testosterone secretion in men. The Journal of Clinical Endocrinology and Metabolism, 90(5), 2636–2641. https://doi.org/10.1210/jc.2004-2190.

    Article  CAS  PubMed  Google Scholar 

  81. Fink, J., Matsumoto, M., & Tamura, Y. (2018). Potential application of testosterone replacement therapy as treatment for obesity and type 2 diabetes in men. Steroids, 138, 161–166. https://doi.org/10.1016/j.steroids.2018.08.002.

    Article  CAS  PubMed  Google Scholar 

  82. Traish, A. M., & Zitzmann, M. (2015). The complex and multifactorial relationship between testosterone deficiency (TD), obesity and vascular disease. Reviews in Endocrine & Metabolic Disorders, 16(3), 249–268. https://doi.org/10.1007/s11154-015-9323-2.

    Article  CAS  Google Scholar 

  83. Corona, G., Mannucci, E., Forti, G., & Maggi, M. (2009). Hypogonadism, ED, metabolic syndrome and obesity: A pathological link supporting cardiovascular diseases. International Journal of Andrology, 32(6), 587–598. https://doi.org/10.1111/j.1365-2605.2008.00951.x.

    Article  CAS  PubMed  Google Scholar 

  84. Traish, A. M., Feeley, R. J., & Guay, A. (2009). Mechanisms of obesity and related pathologies: Androgen deficiency and endothelial dysfunction may be the link between obesity and erectile dysfunction. The FEBS Journal, 276(20), 5755–5767. https://doi.org/10.1111/j.1742-4658.2009.07305.x.

    Article  CAS  PubMed  Google Scholar 

  85. Libby, P., Buring, J. E., Badimon, L., Hansson, G. K., Deanfield, J., Bittencourt, M. S., et al. (2019). Atherosclerosis. Nature Reviews. Disease Primers, 5(1), 56. https://doi.org/10.1038/s41572-019-0106-z.

    Article  PubMed  Google Scholar 

  86. Nezu, T., Hosomi, N., Aoki, S., & Matsumoto, M. (2016). Carotid intima-media thickness for atherosclerosis. Journal of Atherosclerosis and Thrombosis, 23(1), 18–31. https://doi.org/10.5551/jat.31989.

    Article  CAS  PubMed  Google Scholar 

  87. van den Beld, A. W., Bots, M. L., Janssen, J. A., Pols, H. A., Lamberts, S. W., & Grobbee, D. E. (2003). Endogenous hormones and carotid atherosclerosis in elderly men. American Journal of Epidemiology, 157(1), 25–31. https://doi.org/10.1093/aje/kwf160.

    Article  PubMed  Google Scholar 

  88. Fukui, M., Kitagawa, Y., Nakamura, N., Kadono, M., Mogami, S., Hirata, C., et al. (2003). Association between serum testosterone concentration and carotid atherosclerosis in men with type 2 diabetes. Diabetes Care, 26(6), 1869–1873. https://doi.org/10.2337/diacare.26.6.1869.

    Article  CAS  PubMed  Google Scholar 

  89. Svartberg, J., von Muhlen, D., Mathiesen, E., Joakimsen, O., Bonaa, K. H., & Stensland-Bugge, E. (2006). Low testosterone levels are associated with carotid atherosclerosis in men. Journal of Internal Medicine, 259(6), 576–582. https://doi.org/10.1111/j.1365-2796.2006.01637.x.

    Article  CAS  PubMed  Google Scholar 

  90. De Pergola, G., Pannacciulli, N., Ciccone, M., Tartagni, M., Rizzon, P., & Giorgino, R. (2003). Free testosterone plasma levels are negatively associated with the intima-media thickness of the common carotid artery in overweight and obese glucose-tolerant young adult men. International Journal of Obesity and Related Metabolic Disorders, 27(7), 803–807. https://doi.org/10.1038/sj.ijo.0802292.

    Article  CAS  PubMed  Google Scholar 

  91. Muller, M., van den Beld, A. W., Bots, M. L., Grobbee, D. E., Lamberts, S. W., & van der Schouw, Y. T. (2004). Endogenous sex hormones and progression of carotid atherosclerosis in elderly men. Circulation, 109(17), 2074–2079. https://doi.org/10.1161/01.CIR.0000125854.51637.06.

    Article  CAS  PubMed  Google Scholar 

  92. Makinen, J., Jarvisalo, M. J., Pollanen, P., Perheentupa, A., Irjala, K., Koskenvuo, M., et al. (2005). Increased carotid atherosclerosis in andropausal middle-aged men. Journal of the American College of Cardiology, 45(10), 1603–1608. https://doi.org/10.1016/j.jacc.2005.01.052.

    Article  CAS  PubMed  Google Scholar 

  93. Soisson, V., Brailly-Tabard, S., Empana, J. P., Feart, C., Ryan, J., Bertrand, M., et al. (2012). Low plasma testosterone and elevated carotid intima-media thickness: Importance of low-grade inflammation in elderly men. Atherosclerosis, 223(1), 244–249. https://doi.org/10.1016/j.atherosclerosis.2012.05.009.

    Article  CAS  PubMed  Google Scholar 

  94. Farias, J. M., Tinetti, M., Khoury, M., & Umpierrez, G. E. (2014). Low testosterone concentration and atherosclerotic disease markers in male patients with type 2 diabetes. The Journal of Clinical Endocrinology and Metabolism, 99(12), 4698–4703. https://doi.org/10.1210/jc.2014-2585.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lee, W. C., Kim, M. T., Ko, K. T., Lee, W. K., Kim, S. Y., Kim, H. Y., et al. (2014). Relationship between serum testosterone and cardiovascular disease risk determined using the Framingham risk score in male patients with sexual dysfunction. The World Journal of Men's Health, 32(3), 139–144. https://doi.org/10.5534/wjmh.2014.32.3.139.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Wilson, P. W., D’Agostino, R. B., Levy, D., Belanger, A. M., Silbershatz, H., & Kannel, W. B. (1998). Prediction of coronary heart disease using risk factor categories. Circulation, 97(18), 1837–1847. https://doi.org/10.1161/01.CIR.97.18.1837.

    Article  CAS  Google Scholar 

  97. Mahmood, S. S., Levy, D., Vasan, R. S., & Wang, T. J. (2014). The Framingham heart study and the epidemiology of cardiovascular disease: A historical perspective. Lancet, 383(9921), 999–1008. https://doi.org/10.1016/S0140-6736(13)61752-3.

    Article  PubMed  Google Scholar 

  98. Lee, J. M., Colangelo, L. A., Schwartz, J. E., Yano, Y., Siscovick, D. S., Seeman, T., et al. (2016). Associations of cortisol/testosterone and cortisol/sex hormone-binding globulin ratios with atherosclerosis in middle-age women. Atherosclerosis, 248, 203–209. https://doi.org/10.1016/j.atherosclerosis.2016.03.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Helkin, A., Stein, J. J., Lin, S., Siddiqui, S., Maier, K. G., & Gahtan, V. (2016). Dyslipidemia part 1—Review of lipid metabolism and vascular cell physiology. Vascular and Endovascular Surgery, 50(2), 107–118. https://doi.org/10.1177/1538574416628654.

    Article  PubMed  Google Scholar 

  100. Stein, R., Ferrari, F., & Scolari, F. (2019). Genetics, dyslipidemia, and cardiovascular disease: New insights. Current Cardiology Reports, 21(8), 68. https://doi.org/10.1007/s11886-019-1161-5.

    Article  PubMed  Google Scholar 

  101. Shabsigh, R., Katz, M., Yan, G., & Makhsida, N. (2005). Cardiovascular issues in hypogonadism and testosterone therapy. The American Journal of Cardiology, 96(12B), 67M–72M. https://doi.org/10.1016/j.amjcard.2005.10.009.

    Article  CAS  PubMed  Google Scholar 

  102. Haffner, S. M., Mykkanen, L., Valdez, R. A., & Katz, M. S. (1993). Relationship of sex hormones to lipids and lipoproteins in nondiabetic men. The Journal of Clinical Endocrinology and Metabolism, 77(6), 1610–1615. https://doi.org/10.1210/jcem.77.6.8263149.

    Article  CAS  PubMed  Google Scholar 

  103. Agledahl, I., Skjaerpe, P. A., Hansen, J. B., & Svartberg, J. (2008). Low serum testosterone in men is inversely associated with non-fasting serum triglycerides: The Tromso study. Nutrition, Metabolism, and Cardiovascular Diseases, 18(4), 256–262. https://doi.org/10.1016/j.numecd.2007.01.014.

    Article  CAS  PubMed  Google Scholar 

  104. Makinen, J. I., Perheentupa, A., Irjala, K., Pollanen, P., Makinen, J., Huhtaniemi, I., et al. (2008). Endogenous testosterone and serum lipids in middle-aged men. Atherosclerosis, 197(2), 688–693. https://doi.org/10.1016/j.atherosclerosis.2007.05.009.

    Article  CAS  PubMed  Google Scholar 

  105. Khaw, K. T., & Barrett-Connor, E. (1991). Endogenous sex hormones, high density lipoprotein cholesterol, and other lipoprotein fractions in men. Arteriosclerosis and Thrombosis, 11(3), 489–494. https://doi.org/10.1161/01.ATV.11.3.489.

    Article  CAS  PubMed  Google Scholar 

  106. Vaidya, D., Dobs, A., Gapstur, S. M., Golden, S. H., Hankinson, A., Liu, K., et al. (2008). The association of endogenous sex hormones with lipoprotein subfraction profile in the multi-ethnic study of atherosclerosis. Metabolism, 57(6), 782–790. https://doi.org/10.1016/j.metabol.2008.01.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Monroe, A. K., & Dobs, A. S. (2013). The effect of androgens on lipids. Current Opinion in Endocrinology, Diabetes, and Obesity, 20(2), 132–139. https://doi.org/10.1097/MED.0b013e32835edb71.

    Article  CAS  PubMed  Google Scholar 

  108. Thompson, P. D., Cullinane, E. M., Sady, S. P., Chenevert, C., Saritelli, A. L., Sady, M. A., et al. (1989). Contrasting effects of testosterone and stanozolol on serum lipoprotein levels. JAMA, 261(8), 1165–1168. https://doi.org/10.1001/jama.1989.03420080085036.

    Article  CAS  PubMed  Google Scholar 

  109. Bagatell, C. J., Heiman, J. R., Matsumoto, A. M., Rivier, J. E., & Bremner, W. J. (1994). Metabolic and behavioral effects of high-dose, exogenous testosterone in healthy men. The Journal of Clinical Endocrinology and Metabolism, 79(2), 561–567. https://doi.org/10.1210/jcem.79.2.8045977.

    Article  CAS  PubMed  Google Scholar 

  110. Kalinchenko, S. Y., Tishova, Y. A., Mskhalaya, G. J., Gooren, L. J., Giltay, E. J., & Saad, F. (2010). Effects of testosterone supplementation on markers of the metabolic syndrome and inflammation in hypogonadal men with the metabolic syndrome: The double-blinded placebo-controlled Moscow study. Clinical Endocrinology, 73(5), 602–612. https://doi.org/10.1111/j.1365-2265.2010.03845.x.

    Article  CAS  PubMed  Google Scholar 

  111. Traish, A. M., & Kypreos, K. E. (2011). Testosterone and cardiovascular disease: An old idea with modern clinical implications. Atherosclerosis, 214(2), 244–248. https://doi.org/10.1016/j.atherosclerosis.2010.08.078.

    Article  CAS  PubMed  Google Scholar 

  112. Traish, A. M., Abdou, R., & Kypreos, K. E. (2009). Androgen deficiency and atherosclerosis: The lipid link. Vascular Pharmacology, 51(5–6), 303–313. https://doi.org/10.1016/j.vph.2009.09.003.

    Article  CAS  PubMed  Google Scholar 

  113. Lifton, R. P., Gharavi, A. G., & Geller, D. S. (2001). Molecular mechanisms of human hypertension. Cell, 104(4), 545–556. https://doi.org/10.1016/s0092-8674(01)00241-0.

    Article  CAS  PubMed  Google Scholar 

  114. Zitzmann, M., & Nieschlag, E. (2007). Androgen receptor gene CAG repeat length and body mass index modulate the safety of long-term intramuscular testosterone undecanoate therapy in hypogonadal men. The Journal of Clinical Endocrinology and Metabolism, 92(10), 3844–3853. https://doi.org/10.1210/jc.2007-0620.

    Article  CAS  PubMed  Google Scholar 

  115. Traish, A. M., Miner, M. M., Morgentaler, A., & Zitzmann, M. (2011). Testosterone deficiency. The American Journal of Medicine, 124(7), 578–587. https://doi.org/10.1016/j.amjmed.2010.12.027.

    Article  CAS  PubMed  Google Scholar 

  116. Troisi, R., Potischman, N., Roberts, J. M., Ness, R., Crombleholme, W., Lykins, D., et al. (2003). Maternal serum oestrogen and androgen concentrations in preeclamptic and uncomplicated pregnancies. International Journal of Epidemiology, 32(3), 455–460. https://doi.org/10.1093/ije/dyg094.

    Article  PubMed  Google Scholar 

  117. Sathishkumar, K., Elkins, R., Yallampalli, U., Balakrishnan, M., & Yallampalli, C. (2011). Fetal programming of adult hypertension in female rat offspring exposed to androgens in utero. Early Human Development, 87(6), 407–414. https://doi.org/10.1016/j.earlhumdev.2011.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Chinnathambi, V., Blesson, C. S., Vincent, K. L., Saade, G. R., Hankins, G. D., Yallampalli, C., et al. (2014). Elevated testosterone levels during rat pregnancy cause hypersensitivity to angiotensin II and attenuation of endothelium-dependent vasodilation in uterine arteries. Hypertension, 64(2), 405–414. https://doi.org/10.1161/HYPERTENSIONAHA.114.03283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Perez-Sepulveda, A., Monteiro, L. J., Dobierzewska, A., Espana-Perrot, P. P., Venegas-Araneda, P., Guzman-Rojas, A. M., et al. (2015). Placental aromatase is deficient in placental ischemia and preeclampsia. PLoS One, 10(10), e0139682. https://doi.org/10.1371/journal.pone.0139682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. McClamrock, H. D., & Adashi, E. Y. (1992). Gestational hyperandrogenism. Fertility and Sterility, 57(2), 257–274. https://doi.org/10.1016/S0015-0282(16)54828-6.

    Article  CAS  PubMed  Google Scholar 

  121. Bammann, B. L., Coulam, C. B., & Jiang, N. S. (1980). Total and free testosterone during pregnancy. American Journal of Obstetrics and Gynecology, 137(3), 293–298. https://doi.org/10.1016/0002-9378(80)90912-6.

    Article  CAS  PubMed  Google Scholar 

  122. Honda, H., Unemoto, T., & Kogo, H. (1999). Different mechanisms for testosterone-induced relaxation of aorta between normotensive and spontaneously hypertensive rats. Hypertension, 34(6), 1232–1236. https://doi.org/10.1161/01.HYP.34.6.1232.

    Article  CAS  PubMed  Google Scholar 

  123. Perusquia, M., Herrera, N., Ferrer, M., & Stallone, J. N. (2017). Antihypertensive effects of androgens in conscious, spontaneously hypertensive rats. The Journal of Steroid Biochemistry and Molecular Biology, 167, 106–114. https://doi.org/10.1016/j.jsbmb.2016.11.016.

    Article  CAS  PubMed  Google Scholar 

  124. Isidoro, L., Ferrer, M., & Perusquia, M. (2018). Vasoactive androgens: Vasorelaxing effects and their potential regulation of blood pressure. Endocrine Research, 43(3), 166–175. https://doi.org/10.1080/07435800.2018.1448868.

    Article  CAS  PubMed  Google Scholar 

  125. Perusquia, M., Hanson, A. E., Meza, C. M., Kubli, C., Herrera, N., & Stallone, J. N. (2018). Antihypertensive responses of vasoactive androgens in an in vivo experimental model of preeclampsia. The Journal of Steroid Biochemistry and Molecular Biology, 178, 65–72. https://doi.org/10.1016/j.jsbmb.2017.11.001.

    Article  CAS  PubMed  Google Scholar 

  126. Jones, T. H., & Kelly, D. M. (2018). Randomized controlled trials - mechanistic studies of testosterone and the cardiovascular system. Asian Journal of Andrology, 20(2), 120–130. https://doi.org/10.4103/aja.aja_6_18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Tirabassi, G., Gioia, A., Giovannini, L., Boscaro, M., Corona, G., Carpi, A., et al. (2013). Testosterone and cardiovascular risk. Internal and Emergency Medicine, 8(Suppl 1), S65–S69. https://doi.org/10.1007/s11739-013-0914-1.

    Article  PubMed  Google Scholar 

  128. Phillips, G. B., Castelli, W. P., Abbott, R. D., & McNamara, P. M. (1983). Association of hyperestrogenemia and coronary heart disease in men in the Framingham cohort. The American Journal of Medicine, 74(5), 863–869. https://doi.org/10.1016/0002-9343(83)91078-1.

    Article  CAS  PubMed  Google Scholar 

  129. Zhao, S. P., & Li, X. P. (1998). The association of low plasma testosterone level with coronary artery disease in Chinese men. International Journal of Cardiology, 63(2), 161–164. https://doi.org/10.1016/s0167-5273(97)00295-7.

    Article  CAS  PubMed  Google Scholar 

  130. Chan, Y. X., Knuiman, M. W., Hung, J., Divitini, M. L., Handelsman, D. J., Beilby, J. P., et al. (2015). Testosterone, dihydrotestosterone and estradiol are differentially associated with carotid intima-media thickness and the presence of carotid plaque in men with and without coronary artery disease. Endocrine Journal, 62(9), 777–786. https://doi.org/10.1507/endocrj.EJ15-0196.

    Article  CAS  PubMed  Google Scholar 

  131. Debing, E., Peeters, E., Duquet, W., Poppe, K., Velkeniers, B., & Van Den Brande, P. (2008). Men with atherosclerotic stenosis of the carotid artery have lower testosterone levels compared with controls. International Angiology, 27(2), 135–141.

    CAS  PubMed  Google Scholar 

  132. Vikan, T., Johnsen, S. H., Schirmer, H., Njolstad, I., & Svartberg, J. (2009). Endogenous testosterone and the prospective association with carotid atherosclerosis in men: The Tromso study. European Journal of Epidemiology, 24(6), 289–295. https://doi.org/10.1007/s10654-009-9322-2.

    Article  CAS  PubMed  Google Scholar 

  133. Yeap, B. B., Alfonso, H., Chubb, S. A., Handelsman, D. J., Hankey, G. J., Golledge, J., et al. (2013). Lower plasma testosterone or dihydrotestosterone, but not estradiol, is associated with symptoms of intermittent claudication in older men. Clinical Endocrinology, 79(5), 725–732. https://doi.org/10.1111/cen.12208.

    Article  CAS  PubMed  Google Scholar 

  134. Rosano, G. M., Sheiban, I., Massaro, R., Pagnotta, P., Marazzi, G., Vitale, C., et al. (2007). Low testosterone levels are associated with coronary artery disease in male patients with angina. International Journal of Impotence Research, 19(2), 176–182. https://doi.org/10.1038/sj.ijir.3901504.

    Article  CAS  PubMed  Google Scholar 

  135. Goodale, T., Sadhu, A., Petak, S., & Robbins, R. (2017). Testosterone and the heart. Methodist DeBakey Cardiovascular Journal, 13(2), 68–72. https://doi.org/10.14797/mdcj-13-2-68.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Corona, G., Rastrelli, G., Vignozzi, L., Mannucci, E., & Maggi, M. (2011). Testosterone, cardiovascular disease and the metabolic syndrome. Best Practice & Research. Clinical Endocrinology & Metabolism, 25(2), 337–353. https://doi.org/10.1016/j.beem.2010.07.002.

    Article  CAS  Google Scholar 

  137. Jankowska, E. A., Biel, B., Majda, J., Szklarska, A., Lopuszanska, M., Medras, M., et al. (2006). Anabolic deficiency in men with chronic heart failure: Prevalence and detrimental impact on survival. Circulation, 114(17), 1829–1837. https://doi.org/10.1161/CIRCULATIONAHA.106.649426.

    Article  CAS  PubMed  Google Scholar 

  138. Srinivas-Shankar, U., Roberts, S. A., Connolly, M. J., O'Connell, M. D., Adams, J. E., Oldham, J. A., et al. (2010). Effects of testosterone on muscle strength, physical function, body composition, and quality of life in intermediate-frail and frail elderly men: A randomized, double-blind, placebo-controlled study. The Journal of Clinical Endocrinology and Metabolism, 95(2), 639–650. https://doi.org/10.1210/jc.2009-1251.

    Article  CAS  PubMed  Google Scholar 

  139. Jeppesen, L. L., Jorgensen, H. S., Nakayama, H., Raaschou, H. O., Olsen, T. S., & Winther, K. (1996). Decreased serum testosterone in men with acute ischemic stroke. Arteriosclerosis, Thrombosis, and Vascular Biology, 16(6), 749–754. https://doi.org/10.1161/01.atv.16.6.749.

    Article  CAS  PubMed  Google Scholar 

  140. Yeap, B. B., Hyde, Z., Almeida, O. P., Norman, P. E., Chubb, S. A., Jamrozik, K., et al. (2009). Lower testosterone levels predict incident stroke and transient ischemic attack in older men. The Journal of Clinical Endocrinology and Metabolism, 94(7), 2353–2359. https://doi.org/10.1210/jc.2008-2416.

    Article  CAS  PubMed  Google Scholar 

  141. Yeap, B. B., Hyde, Z., Norman, P. E., Chubb, S. A., & Golledge, J. (2010). Associations of total testosterone, sex hormone-binding globulin, calculated free testosterone, and luteinizing hormone with prevalence of abdominal aortic aneurysm in older men. The Journal of Clinical Endocrinology and Metabolism, 95(3), 1123–1130. https://doi.org/10.1210/jc.2009-1696.

    Article  CAS  PubMed  Google Scholar 

  142. Magnani, J. W., Moser, C. B., Murabito, J. M., Sullivan, L. M., Wang, N., Ellinor, P. T., et al. (2014). Association of sex hormones, aging, and atrial fibrillation in men: The Framingham heart study. Circulation. Arrhythmia and Electrophysiology, 7(2), 307–312. https://doi.org/10.1161/CIRCEP.113.001322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Zeller, T., Schnabel, R. B., Appelbaum, S., Ojeda, F., Berisha, F., Schulte-Steinberg, B., et al. (2018). Low testosterone levels are predictive for incident atrial fibrillation and ischaemic stroke in men, but protective in women - results from the FINRISK study. European Journal of Preventive Cardiology, 25(11), 1133–1139. https://doi.org/10.1177/2047487318778346.

    Article  PubMed  Google Scholar 

  144. Lai, J., Zhou, D., Xia, S., Shang, Y., Want, L., Zheng, L., et al. (2009). Reduced testosterone levels in males with lone atrial fibrillation. Clinical Cardiology, 32(1), 43–46. https://doi.org/10.1002/clc.20423.

    Article  PubMed  Google Scholar 

  145. Zhang, Y., Wang, H. M., Wang, Y. Z., Zhang, Y. Y., Jin, X. X., Zhao, Y., et al. (2017). Increment of late sodium currents in the left atrial myocytes and its potential contribution to increased susceptibility of atrial fibrillation in castrated male mice. Heart Rhythm, 14(7), 1073–1080. https://doi.org/10.1016/j.hrthm.2017.01.046.

    Article  PubMed  Google Scholar 

  146. Rosenberg, M. A., Shores, M. M., Matsumoto, A. M., Bůžková, P., Lange, L. A., Kronmal, R. A., et al. (2018). Serum androgens and risk of atrial fibrillation in older men: The cardiovascular health study. Clinical Cardiology, 41(6), 830–836. https://doi.org/10.1002/clc.22965.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Berger, D., Folsom, A. R., Schreiner, P. J., Chen, L. Y., Michos, E. D., O'Neal, W. T., et al. (2019). Plasma total testosterone and risk of incident atrial fibrillation: The atherosclerosis risk in communities (ARIC) study. Maturitas, 125, 5–10. https://doi.org/10.1016/j.maturitas.2019.03.015.

    Article  CAS  PubMed  Google Scholar 

  148. O'Neal, W. T., Nazarian, S., Alonso, A., Heckbert, S. R., Vaccarino, V., & Soliman, E. Z. (2017). Sex hormones and the risk of atrial fibrillation: The multi-ethnic study of atherosclerosis (MESA). Endocrine, 58(1), 91–96. https://doi.org/10.1007/s12020-017-1385-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Hackett, G. (2019). Metabolic effects of testosterone therapy in men with type 2 diabetes and metabolic syndrome. Sex Med Rev, 7(3), 476–490. https://doi.org/10.1016/j.sxmr.2018.12.004.

    Article  PubMed  Google Scholar 

  150. Sizar, O., & Pico, J. (2019). Androgen replacement. In StatPearls. Treasure Island (FL).

  151. Snyder, P. J., Bhasin, S., Cunningham, G. R., Matsumoto, A. M., Stephens-Shields, A. J., Cauley, J. A., et al. (2018). Lessons from the testosterone trials. Endocrine Reviews, 39(3), 369–386. https://doi.org/10.1210/er.2017-00234.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Budoff, M. J., Ellenberg, S. S., Lewis, C. E., Mohler 3rd, E. R., Wenger, N. K., Bhasin, S., et al. (2017). Testosterone treatment and coronary artery plaque volume in older men with low testosterone. JAMA, 317(7), 708–716. https://doi.org/10.1001/jama.2016.21043.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Mohler 3rd, E. R., Ellenberg, S. S., Lewis, C. E., Wenger, N. K., Budoff, M. J., Lewis, M. R., et al. (2018). The effect of testosterone on cardiovascular biomarkers in the testosterone trials. The Journal of Clinical Endocrinology and Metabolism, 103(2), 681–688. https://doi.org/10.1210/jc.2017-02243.

    Article  PubMed  Google Scholar 

  154. Keya, S. L., Khanam, N. N., Chowdhury, A. A., Ripon, R., Tasnim, T., & Sharmin, A. (2019). Relationship between free testosterone and preeclampsia. Mymensingh Medical Journal, 28, 574–581.

    CAS  PubMed  Google Scholar 

  155. Kloner, R. A., Carson 3rd, C., Dobs, A., Kopecky, S., & Mohler 3rd, E. R. (2016). Testosterone and cardiovascular disease. Journal of the American College of Cardiology, 67(5), 545–557. https://doi.org/10.1016/j.jacc.2015.12.005.

    Article  CAS  Google Scholar 

  156. Baillargeon, J., Urban, R. J., Kuo, Y. F., Ottenbacher, K. J., Raji, M. A., Du, F., et al. (2014). Risk of myocardial infarction in older men receiving testosterone therapy. The Annals of Pharmacotherapy, 48(9), 1138–1144. https://doi.org/10.1177/1060028014539918.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Dobrzycki, S., Serwatka, W., Nadlewski, S., Korecki, J., Jackowski, R., Paruk, J., et al. (2003). An assessment of correlations between endogenous sex hormone levels and the extensiveness of coronary heart disease and the ejection fraction of the left ventricle in males. The Journal of Medical Investigation, 50, 162–169.

    PubMed  Google Scholar 

  158. Soisson, V., Brailly-Tabard, S., Helmer, C., Rouaud, O., Ancelin, M. L., Zerhouni, C., et al. (2013). A J-shaped association between plasma testosterone and risk of ischemic arterial event in elderly men: The French 3C cohort study. Maturitas, 75(3), 282–288. https://doi.org/10.1016/j.maturitas.2013.04.012.

    Article  CAS  PubMed  Google Scholar 

  159. Muraleedharan, V., Marsh, H., Kapoor, D., Channer, K. S., & Jones, T. H. (2013). Testosterone deficiency is associated with increased risk of mortality and testosterone replacement improves survival in men with type 2 diabetes. European Journal of Endocrinology, 169(6), 725–733. https://doi.org/10.1530/EJE-13-0321.

    Article  CAS  PubMed  Google Scholar 

  160. Jankowska, E. A., Filippatos, G., Ponikowska, B., Borodulin-Nadzieja, L., Anker, S. D., Banasiak, W., et al. (2009). Reduction in circulating testosterone relates to exercise capacity in men with chronic heart failure. Journal of Cardiac Failure, 15(5), 442–450. https://doi.org/10.1016/j.cardfail.2008.12.011.

    Article  CAS  PubMed  Google Scholar 

  161. Pugh, P. (2003). Acute haemodynamic effects of testosterone in men with chronic heart failure. European Heart Journal, 24(10), 909–915. https://doi.org/10.1016/s0195-668x(03)00083-6.

    Article  CAS  PubMed  Google Scholar 

  162. Malkin, C. J., Pugh, P. J., Jones, R. D., Kapoor, D., Channer, K. S., & Jones, T. H. (2004). The effect of testosterone replacement on endogenous inflammatory cytokines and lipid profiles in hypogonadal men. The Journal of Clinical Endocrinology and Metabolism, 89(7), 3313–3318. https://doi.org/10.1210/jc.2003-031069.

    Article  CAS  PubMed  Google Scholar 

  163. Deenadayalu, V., Puttabyatappa, Y., Liu, A. T., Stallone, J. N., & White, R. E. (2012). Testosterone-induced relaxation of coronary arteries: Activation of BKCa channels via the cGMP-dependent protein kinase. American Journal of Physiology. Heart and Circulatory Physiology, 302(1), H115–H123. https://doi.org/10.1152/ajpheart.00046.2011.

    Article  CAS  PubMed  Google Scholar 

  164. Jones, R. D., Pugh, P. J., Jones, T. H., & Channer, K. S. (2003). The vasodilatory action of testosterone: A potassium-channel opening or a calcium antagonistic action? British Journal of Pharmacology, 138(5), 733–744.

    Article  CAS  Google Scholar 

  165. Oskui, P. M., French, W. J., Herring, M. J., Mayeda, G. S., Burstein, S., & Kloner, R. A. (2013). Testosterone and the cardiovascular system: A comprehensive review of the clinical literature. Journal of the American Heart Association, 2(6), e000272. https://doi.org/10.1161/JAHA.113.000272.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Vigen, R., O'Donnell, C. I., Baron, A. E., Grunwald, G. K., Maddox, T. M., Bradley, S. M., et al. (2013). Association of testosterone therapy with mortality, myocardial infarction, and stroke in men with low testosterone levels. JAMA, 310(17), 1829–1836. https://doi.org/10.1001/jama.2013.280386.

    Article  CAS  PubMed  Google Scholar 

  167. Finkle, W. D., Greenland, S., Ridgeway, G. K., Adams, J. L., Frasco, M. A., Cook, M. B., et al. (2014). Increased risk of non-fatal myocardial infarction following testosterone therapy prescription in men. PLoS One, 9(1), e85805. https://doi.org/10.1371/journal.pone.0085805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Webb, C. M., & Collins, P. (2017). Role of testosterone in the treatment of cardiovascular disease. European Cardiology, 12(2), 83–87. https://doi.org/10.15420/ecr.2017:21:1.

    Article  Google Scholar 

  169. Morgentaler, A., & Kacker, R. (2014). Andrology: Testosterone and cardiovascular risk—Deciphering the statistics. Nature Reviews. Urology, 11(3), 131–132. https://doi.org/10.1038/nrurol.2014.24.

    Article  CAS  PubMed  Google Scholar 

  170. Sharma, R., Oni, O. A., Gupta, K., Chen, G., Sharma, M., Dawn, B., et al. (2015). Normalization of testosterone level is associated with reduced incidence of myocardial infarction and mortality in men. European Heart Journal, 36(40), 2706–2715. https://doi.org/10.1093/eurheartj/ehv346.

    Article  PubMed  Google Scholar 

  171. Cheetham, T. C., An, J., Jacobsen, S. J., Niu, F., Sidney, S., Quesenberry, C. P., et al. (2017). Association of testosterone replacement with cardiovascular outcomes among men with androgen deficiency. JAMA Internal Medicine, 177(4), 491–499. https://doi.org/10.1001/jamainternmed.2016.9546.

    Article  PubMed  Google Scholar 

  172. Chistiakov, D. A., Myasoedova, V. A., Melnichenko, A. A., Grechko, A. V., & Orekhov, A. N. (2018). Role of androgens in cardiovascular pathology. Vascular Health and Risk Management, 14, 283–290. https://doi.org/10.2147/VHRM.S173259.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

Margarida Lorigo acknowledges the doctoral incentive grant (BID) financed by the multiannual program contract of patronage UBI-Santander Totta (BID/FCS/2018). This work was also supported by FEDER funds through the POCI-COMPETE 2020—Operational Programme Competitiveness and Internationalisation in Axis I-Strengthening Research, Technological Development and Innovation (Project POCI-01-0145-FEDER007491) and National Funds by FCT—Foundation for Science and Technology (Project UID/Multi/00709/2019).

Author information

Authors and Affiliations

Authors

Contributions

E.C. identified the need for this review; M.L., M.C.L and E.C designed the manuscript; M.L., M.M and O.L wrote the manuscript; M.L., M.M, O.L, M.C.L and E.C. reviewed the literature and E.C. and M.C.L. critically reviewed the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Elisa Cairrao.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Associate Editor Yihua Bei oversaw the review of this article

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorigo, M., Mariana, M., Oliveira, N. et al. Vascular Pathways of Testosterone: Clinical Implications. J. of Cardiovasc. Trans. Res. 13, 55–72 (2020). https://doi.org/10.1007/s12265-019-09939-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12265-019-09939-5

Keywords

Navigation