Skip to main content

Advertisement

Log in

The clinicopathological and prognostic value of programmed death-ligand 1 in colorectal cancer: a meta-analysis

  • Research Article
  • Published:
Clinical and Translational Oncology Aims and scope Submit manuscript

Abstract

Introduction

Programmed death-ligand 1 (PD-L1) is reportedly expressed in colorectal tumors. However, the prognostic role of PD-L1 in colorectal cancer (CRC) remains controversial. Therefore, we performed a meta-analysis to investigate the clinicopathological and prognostic impact of PD-L1 in CRC.

Methods

A comprehensive search in PubMed, Embase, the Cochrane Library, Web of Science and the ClinicalTrials.gov for publications about PD-L1 expression in colorectal cancer was done. The correlation between PD-L1 expression and clinicopathological features or survival outcomes was analyzed by odds ratios (OR) or hazard ratios (HR), at 95% confidence intervals (CI).

Results

The results show that the pooled HR of (1.34, 95% CI 1.02–1.65, p = 0.01) indicated the association of PD-L1 expression with overall survival (OS) in CRC patients. Meanwhile, the expression of PD-L1 was positively correlated with the lymph node metastasis (OR: 0.70, 95% CI 0.51–0.95, p = 0.00), gender (OR: 0.86, 95% CI 0.76–0.98, p = 0.05) and tumor location (OR: 1.39, 95% CI 1.14–1.71, p = 0.12).

Conclusions

These results suggest that high expression of PD-L1 is associated with low OS in CRC. High PD-L1 expression may act as a negative factor for patients with CRC and help to identify patients suitable for anticancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen W, Zheng R, Baade PD, Zhang S, Zeng H, Bray F, et al. Cancer statistics in China, 2015. CA Cancer J Clin. 2016;66(2):115–32.

    Google Scholar 

  2. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108.

    PubMed  Google Scholar 

  3. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2018. CA Cancer J Clin. 2018;68(1):7–30.

    Article  Google Scholar 

  4. D’Alterio C, Nasti G, Polimeno M, Ottaiano A, Conson M, Circelli L, et al. CXCR4-CXCL12-CXCR7, TLR2-TLR4, and PD-1/PD-L1 in colorectal cancer liver metastases from neoadjuvant-treated patients. Oncoimmunology. 2016;5(12):10.

    Google Scholar 

  5. Yothers G, O’Connell MJ, Allegra CJ, Kuebler JP, Colangelo LH, Petrelli NJ, et al. Oxaliplatin as adjuvant therapy for colon cancer: updated results of NSABP C-07 trial, including survival and subset analyses. J Clin Oncol. 2011;29(28):3768–74.

    Article  CAS  Google Scholar 

  6. Tournigand C, Andre T, Bonnetain F, Chibaudel B, Lledo G, Hickish T, et al. Adjuvant therapy with fluorouracil and oxaliplatin in stage II and elderly patients (between ages 70 and 75 years) with colon cancer: subgroup analyses of the Multicenter International Study of Oxaliplatin, Fluorouracil, and Leucovorin in the Adjuvant Treatment of Colon Cancer trial. J Clin Oncol. 2012;30(27):3353–60.

    Article  CAS  Google Scholar 

  7. Tural D, Selcukbiricik F, Yildiz O, Elcin O, Erdamar S, Guney S, et al. Preoperative versus postoperative chemoradiotherapy in stage T3, N0 rectal cancer. Int J Clin Oncol. 2014;19(5):889–96.

    Article  CAS  Google Scholar 

  8. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  Google Scholar 

  9. Zou W, Wolchok JD, Chen L. PD-L1 (B7-H1) and PD-1 pathway blockade for cancer therapy: mechanisms, response biomarkers, and combinations. Sci Transl Med. 2016;8(328):328rv4.

    Article  Google Scholar 

  10. Qorraj M, Bruns H, Bottcher M, Weigand L, Saul D, Mackensen A, et al. The PD-1/PD-L1 axis contributes to immune metabolic dysfunctions of monocytes in chronic lymphocytic leukemia. Leukemia. 2017;31(2):470–8.

    Article  CAS  Google Scholar 

  11. Perez-Gracia JL, Labiano S, Rodriguez-Ruiz ME, Sanmamed MF, Melero I. Orchestrating immune check-point blockade for cancer immunotherapy in combinations. Curr Opin Immunol. 2014;27(1):89–97.

    Article  CAS  Google Scholar 

  12. Cantoni C, Huergo-Zapico L, Parodi M, Pedrazzi M, Mingari MC, Moretta A, et al. NK cells, Tumor cell transition, and tumor progression in solid malignancies: new hints for NK-based immunotherapy? J Immunol Res. 2016;2016:4684268.

    Article  Google Scholar 

  13. Page DB, Postow MA, Callahan MK, Allison JP, Wolchok JD. Immune modulation in cancer with antibodies. Annu Rev Med. 2014;65:185–92.

    Article  CAS  Google Scholar 

  14. Wu P, Wu D, Li L, Chai Y, Huang J. PD-L1 and survival in solid tumors: a meta-analysis. PLoS One. 2015;10(6):e0131403.

    Article  Google Scholar 

  15. Cierna Z, Mego M, Miskovska V, Machalekova K, Chovanec M, Svetlovska D, et al. Prognostic value of programmed-death-1 receptor (PD-1) and its ligand 1 (PD-L1) in testicular germ cell tumors. Ann Oncol. 2016;27(2):300–5.

    Article  CAS  Google Scholar 

  16. Meng XJ, Huang ZQ, Teng FF, Xing LG, Yu JM. Predictive biomarkers in PD-1/PD-L1 checkpoint blockade immunotherapy. Cancer Treat Rev. 2015;41(10):868–76.

    Article  CAS  Google Scholar 

  17. Zheng P, Zhou Z. Human Cancer Immunotherapy with PD-1/PD-L1 Blockade. Biomark Cancer. 2015;7(Suppl 2):15–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gotzsche PC, Ioannidis JP, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1–34.

    Article  Google Scholar 

  19. Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses. Eur J Epidemiol. 2010;25(9):603–5.

    Article  Google Scholar 

  20. Parmar MK, Torri V, Stewart L. Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Statistics Med. 1998;17(24):2815–34.

    Article  CAS  Google Scholar 

  21. DerSimonian R, Laird N. Meta-analysis in clinical trials revisited. Contemp Clin Trials. 2015;45(Pt A):139–45.

    Article  Google Scholar 

  22. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–101.

    Article  CAS  Google Scholar 

  23. Stuck AE, Rubenstein LZ, Wieland D. Bias in meta-analysis detected by a simple, graphical test. Asymmetry detected in funnel plot was probably due to true heterogeneity. BMJ (Clinical Res Ed). 1998;316(7129):469;author reply 470–71.

    Article  CAS  Google Scholar 

  24. Zhu M, Sun J, Wang H, Mao Y, Wu YY, Zhang XG. Expressions of co inhibitory molecules B7 H1 and B7 H4 in colorectal carcinoma and their clinical significances. Chinese J Cancer Biother. 2011;18(5):528–32.

    CAS  Google Scholar 

  25. Droeser RA, Hirt C, Viehl CT, Frey DM, Nebiker C, Huber X, et al. Clinical impact of programmed cell death ligand 1 expression in colorectal cancer. Eur J cancer (Oxford, England: 1990). 2013;49(9):2233–42.

    Article  CAS  Google Scholar 

  26. Shi S-J, Wang L-J, Wang G-D, Guo Z-Y, Wei M, Meng Y-L, et al. B7–H1 expression is associated with poor prognosis in colorectal carcinoma and regulates the proliferation and invasion of HCT116 colorectal cancer cells. Plos One. 2013;8(10):e76012.

    Article  CAS  Google Scholar 

  27. Song M, Chen D, Lu B, Wang C, Zhang J, Huang L, et al. PTEN loss increases PD-L1 protein expression and affects the correlation between PD-L1 expression and clinical parameters in colorectal cancer. PLoS One. 2013;8(6):e65821.

    Article  CAS  Google Scholar 

  28. Liang M, Li J, Wang D, Li S, Sun Y, Sun T, et al. T-cell infiltration and expressions of T lymphocyte co-inhibitory B7-H1 and B7-H4 molecules among colorectal cancer patients in northeast China’s Heilongjiang province. Tumor Biol. 2014;35(1):55–60.

    Article  CAS  Google Scholar 

  29. Li XF, Liu XF, Yang YY, Liu AY, Zhang MY, Bai XF, et al. Correlation study of Bcl-2, B7-H1, EGFR, VEGF and colorectal cancer. Am J Cancer Res. 2015;5(7):2277–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhu H, Qin H, Huang Z, Li S, Zhu X, He J, et al. Clinical significance of programmed death ligand-1 (PD-L1) in colorectal serrated adenocarcinoma. Int J Clin Exp Pathol. 2015;8(8):9351–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Kim JH, Park HE, Cho NY, Lee HS, Kang GH. Characterisation of PD-L1-positive subsets of microsatellite-unstable colorectal cancers. Br J Cancer. 2016;115(4):490–6.

    Article  CAS  Google Scholar 

  32. Koganemaru S, Inoshita N, Miura Y, Fukui Y, Ozaki Y, Tomizawa K, et al. Prognostic value of programmed death-ligand 1 (PD-L1) expression in patients with stage III colorectal cancer. J Clin Oncol. 2016;34.

  33. Lee LH, Cavalcanti MS, Sega NH, Hechtman JF, Weiser MR, Smith JJ, et al. Patterns and prognostic relevance of PD-1 and PD-L1 expression in colorectal carcinoma. Mod Pathol. 2016;29(11):1433–42.

    Article  CAS  Google Scholar 

  34. Li Y, Liang L, Dai W, Cai G, Xu Y, Li X, et al. Prognostic impact of programed cell death-1 (PD-1) and PD-ligand 1 (PD-L1) expression in cancer cells and tumor infiltrating lymphocytes in colorectal cancer. Mol Cancer. 2016;15(1):55.

    Article  Google Scholar 

  35. Wang L, Ren F, Wang Q, Baldridge LA, Monn MF, Fisher KW, et al. Significance of programmed death ligand 1 (PD-L1) immunohistochemical expression in colorectal cancer. Mol Diagnosis Ther. 2016;20(2):175–81.

    Article  CAS  Google Scholar 

  36. Lee KS, Kwak Y, Ahn S, Shin E, Oh HK, Kim DW, et al. Prognostic implication of CD274 (PD-L1) protein expression in tumor-infiltrating immune cells for microsatellite unstable and stable colorectal cancer. Cancer Immunol Immunother. 2017;66(7):927–39.

    Article  CAS  Google Scholar 

  37. Korehisa S, Oki E, Iimori M, Nakaji Y, Shimokawa M, Saeki H, et al. Clinical significance of programmed cell death-ligand 1 expression and the immune microenvironment at the invasive front of colorectal cancers with high microsatellite instability. Int J Cancer. 2018;142(4):822–32.

    Article  CAS  Google Scholar 

  38. Lee SJ, Jun SY, Lee IH, Kang BW, Park SY, Kim HJ, et al. CD274, LAG3, and IDO1 expressions in tumor-infiltrating immune cells as prognostic biomarker for patients with MSI-high colon cancer. J Cancer Res Clin Oncol. 2018;144(6):1005–14.

    Article  CAS  Google Scholar 

  39. Masugi Y, Nishihara R, Yang J, Mima K, Da Silva A, Shi Y, et al. Tumour CD274 (PD-L1) expression and T cells in colorectal cancer. Gut. 2017;66(8):1463–73.

    Article  CAS  Google Scholar 

  40. Bae SU, Jeong WK, Baek SK, Kim NK, Hwang I. Prognostic impact of programmed cell death ligand 1 expression on long-term oncologic outcomes in colorectal cancer. Oncol Lett. 2018;16(4):5214–22.

    PubMed  PubMed Central  Google Scholar 

  41. Berntsson J, Eberhard J, Nodin B, Leandersson K, Larsson AH, Jirström K. Expression of programmed cell death protein 1 (PD-1) and its ligand PD-L1 in colorectal cancer: relationship with sidedness and prognosis. OncoImmunology. 2018;7(8):e1465165.

    Article  Google Scholar 

  42. Enkhbat T, Nishi M, Takasu C, Yoshikawa K, Jun H, Tokunaga T, et al. Programmed cell death ligand 1 expression is an independent prognostic factor in colorectal cancer. Anticancer Res. 2018;38(6):3367–73.

    Article  CAS  Google Scholar 

  43. Duval S, Tweedie R. Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. Biometrics. 2000;56(2):455–63.

    Article  CAS  Google Scholar 

  44. Ioannidis JP, Trikalinos TA. The appropriateness of asymmetry tests for publication bias in meta-analyses: a large survey. CMAJ. 2007;176(8):1091–6.

    Article  Google Scholar 

  45. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480–9.

    Article  CAS  Google Scholar 

  46. Abdel-Rahman O. PD-L1 expression and outcome of advanced melanoma patients treated with anti-PD-1/PD-L1 agents: a meta-analysis. Immunotherapy. 2016;8(9):1081–9.

    Article  CAS  Google Scholar 

  47. Zhou C, Tang J, Sun H, Zheng X, Li Z, Sun T, et al. PD-L1 expression as poor prognostic factor in patients with non-squamous non-small cell lung cancer. Oncotarget. 2017;8(35):58457–68.

    PubMed  PubMed Central  Google Scholar 

  48. Huang Y, Zhang SD, McCrudden C, Chan KW, Lin Y, Kwok HF. The prognostic significance of PD-L1 in bladder cancer. Oncol Rep. 2015;33(6):3075–84.

    Article  CAS  Google Scholar 

  49. Xu F, Feng G, Zhao H, Liu F, Xu L, Wang Q, et al. Clinicopathologic significance and prognostic value of b7 homolog 1 in gastric cancer: a systematic review and meta-analysis. Medicine. 2015;94(43):e1911.

    Article  CAS  Google Scholar 

  50. Huang B, Chen L, Bao C, Sun C, Li J, Wang L, et al. The expression status and prognostic significance of programmed cell death 1 ligand 1 in gastrointestinal tract cancer: a systematic review and meta-analysis. Onco Targets Ther. 2015;8:2617–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Dai C, Wang M, Lu J, Dai Z, Lin S, Yang P, et al. Prognostic and predictive values of PD-L1 expression in patients with digestive system cancer: a meta-analysis. Onco Targets Ther. 2017;10:3625–34.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XN and JS: designed the study. XN, XS and LW: searched databases and collected full-text papers. YC, YZ and WL: performed statistical analysis. XN and DW: wrote the manuscript. All authors reviewed the final version of the manuscript.

Corresponding author

Correspondence to J. Suo.

Ethics declarations

Conflict of interest

The authors certify that there is no conflict of interest regarding this manuscript.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors.

Informed consent

For this type of study, formal consent is not required.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, X., Sun, X., Wang, D. et al. The clinicopathological and prognostic value of programmed death-ligand 1 in colorectal cancer: a meta-analysis. Clin Transl Oncol 21, 674–686 (2019). https://doi.org/10.1007/s12094-018-1970-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12094-018-1970-9

Keywords

Navigation