Skip to main content

Advertisement

Log in

Transcriptional Characterization of Wnt and Notch Signaling Pathways in Neuronal Differentiation of Human Adipose Tissue-Derived Stem Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Since the nervous system has limited self-repair capability, a great interest in using stem cells is generated to repair it. The adipose tissue is an abundant source of stem cells and previous reports have shown the differentiation of them in neuron-like cells when cultures are enriched with growth factors involved in neurogenesis. Regarding this, it could be thought that a functional parallelism between neurogenesis and neuronal differentiation of human adipose stem cells (hASCs) exists. For this reason, we investigated the putative involvement of Notch and Wnt pathways in neuronal differentiation of hASCs through real-time PCR. We found that both Wnt and Notch signaling are present in proliferating hASCs and that both cascades are downregulated when cells are differentiated to a neuronal phenotype. These results are in concordance with previous works where it was found that both pathways are involved in the maintenance of the proliferative state of stem cells, probably through inhibition of the expression of cell-fate-specific genes. These results could support the notion that hASCs differentiation into neuron-like cells represents a regulated process analogous to what occurs during neuronal differentiation of NSCs and could partially contribute to elucidate the molecular mechanisms involved in neuronal differentiation of adult human nonneural tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akai J, Halley PA, Storey KG (2005) FGF-dependent Notch signaling maintains the spinal cord stem zone. Genes Dev 19:2877–2887

    Article  PubMed  CAS  Google Scholar 

  • Alexson TO, Hitoshi S, Coles BL, Bernstein A, van der Kooy D (2006) Notch signaling is required to maintain all neural stem cell populations—irrespective of spatial or temporal niche. Dev Neurosci 28:34–48

    Article  PubMed  CAS  Google Scholar 

  • Androutsellis-Theotokis A, Leker RR, Soldner F et al (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826

    Article  PubMed  CAS  Google Scholar 

  • Anghileri E, Marconi S, Pignatelli A et al (2008) Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev 17:909–916

    Article  PubMed  CAS  Google Scholar 

  • Artavanis-Tsakonas S, Rand MD, Lake RJ (1999) Notch signaling: cell fate control and signal integration in development. Science 284:770–776

    Article  PubMed  CAS  Google Scholar 

  • Ashjian PH, Elbarbary AS, Edmonds B et al (2003) In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast Reconstr Surg 111:1922–1931

    Article  PubMed  Google Scholar 

  • Baek SH, Kioussi C, Briata P et al (2003) Regulated subset of G1 growth-control genes in response to derepression by the Wnt pathway. Proc Natl Acad Sci USA 100:3245–3250

    Article  PubMed  CAS  Google Scholar 

  • Bain G, Kitchens D, Yao M, Huettner JE, Gottlieb DI (1995) Embryonic stem cells express neuronal properties in vitro. Dev Biol 168:342–357

    Article  PubMed  CAS  Google Scholar 

  • Baker JC, Beddington RS, Harland RM (1999) Wnt signaling in Xenopus embryos inhibits bmp4 expression and activates neural development. Genes Dev 13:3149–3159

    Article  PubMed  CAS  Google Scholar 

  • Bennett CN, Ross SE, Longo KA et al (2002) Regulation of Wnt signaling during adipogenesis. J Biol Chem 277:30998–31004

    Article  PubMed  CAS  Google Scholar 

  • Boquest AC, Shahdadfar A, Fronsdal K (2005) Isolation and transcription profiling of purified uncultured human stromal stem cells: alteration of gene expression after in vitro cell culture. Mol Biol Cell 16:1131–1141

    Article  PubMed  CAS  Google Scholar 

  • Bray SJ (2006) Notch signalling: a simple pathway becomes complex. Nat Rev Mol Cell Biol 7:678–689

    Article  PubMed  CAS  Google Scholar 

  • Cadigan KM, Nusse R (1997) Wnt signaling: a common theme in animal development. Genes Dev 11:3286–3305

    Article  PubMed  CAS  Google Scholar 

  • Cai C, Thorne J, Grabel L (2008) Hedgehog serves as a mitogen and survival factor during embryonic stem cell neurogenesis. Stem Cells 26:1097–1108

    Article  PubMed  CAS  Google Scholar 

  • Cardozo A, Ielpi M, Gomez D, Argibay P (2010) Differential expression of Shh and BMP signaling in the potential conversion of human adipose tissue stem cells into neuron-like cells in vitro. Gene Expr 14:307–319

    Article  PubMed  Google Scholar 

  • Castelo-Branco G, Wagner J, Rodriguez FJ et al (2003) Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci USA 100:12747–12752

    Article  PubMed  CAS  Google Scholar 

  • Chi GF, Kim MR, Kim DW, Jiang MH, Son Y (2010) Schwann cells differentiated from spheroid-forming cells of rat subcutaneous fat tissue myelinate axons in the spinal cord injury. Exp Neurol 222:304–317

    Article  PubMed  CAS  Google Scholar 

  • Chiba S (2006) Notch signaling in stem cell systems. Stem Cells 24:2437–2447

    Article  PubMed  CAS  Google Scholar 

  • Cho HH, Kim YJ, Kim SJ et al (2006) Endogenous Wnt signaling promotes proliferation and suppresses osteogenic differentiation in human adipose derived stromal cells. Tissue Eng 12:111–121

    Article  PubMed  CAS  Google Scholar 

  • Dale TC (1998) Signal transduction by the Wnt family of ligands. Biochem J 329(Pt 2):209–223

    PubMed  CAS  Google Scholar 

  • Dejmek J, Safholm A, Kamp NC, Andersson T, Leandersson K (2006) Wnt-5a/Ca2±-induced NFAT activity is counteracted by Wnt-5a/Yes-Cdc42-casein kinase 1alpha signaling in human mammary epithelial cells. Mol Cell Biol 26:6024–6036

    Article  PubMed  CAS  Google Scholar 

  • Dhar S, Yoon ES, Kachgal S, Evans GR (2007) Long-term maintenance of neuronally differentiated human adipose tissue-derived stem cells. Tissue Eng 13:2625–2632

    Article  PubMed  CAS  Google Scholar 

  • Dorsky RI, Moon RT, Raible DW (1998) Control of neural crest cell fate by the Wnt signalling pathway. Nature 396:370–373

    Article  PubMed  CAS  Google Scholar 

  • Duncan AW, Rattis FM, DiMascio LN et al (2005) Integration of Notch and Wnt signaling in hematopoietic stem cell maintenance. Nat Immunol 6:314–322

    Article  PubMed  CAS  Google Scholar 

  • Etheridge SL, Spencer GJ, Heath DJ, Genever PG (2004) Expression profiling and functional analysis of wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 22:849–860

    Article  PubMed  CAS  Google Scholar 

  • Fischer A, Gessler M (2007) Delta-Notch–and then? Protein interactions and proposed modes of repression by Hes and Hey bHLH factors. Nucleic Acids Res 35:4583–4596

    Article  PubMed  CAS  Google Scholar 

  • Freed CR, Greene PE, Breeze RE et al (2001) Transplantation of embryonic dopamine neurons for severe Parkinson’s disease. N Engl J Med 344:710–719

    Article  PubMed  CAS  Google Scholar 

  • Gage FH (2000) Mammalian neural stem cells. Science 287:1433–1438

    Article  PubMed  CAS  Google Scholar 

  • Gaiano N, Fishell G (2002) The role of notch in promoting glial and neural stem cell fates. Annu Rev Neurosci 25:471–490

    Article  PubMed  CAS  Google Scholar 

  • Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, Gimble JM (2001) Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 189:54–63

    Article  PubMed  CAS  Google Scholar 

  • Hall AC, Lucas FR, Salinas PC (2000) Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100:525–535

    Article  PubMed  CAS  Google Scholar 

  • Hartmann C, Tabin CJ (2000) Dual roles of Wnt signaling during chondrogenesis in the chicken limb. Development 127:3141–3159

    PubMed  CAS  Google Scholar 

  • Hauner H, Schmid P, Pfeiffer EF (1987) Glucocorticoids and insulin promote the differentiation of human adipocyte precursor cells into fat cells. J Clin Endocrinol Metab 64:832–835

    Article  PubMed  CAS  Google Scholar 

  • He TC, Sparks AB, Rago C et al (1998) Identification of c-MYC as a target of the APC pathway. Science 281:1509–1512

    Article  PubMed  CAS  Google Scholar 

  • Huelsken J, Behrens J (2002) The Wnt signalling pathway. J Cell Sci 115:3977–3978

    Article  PubMed  CAS  Google Scholar 

  • Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S (2007) Crossing paths with Notch in the hyper-network. Curr Opin Cell Biol 19:166–175

    Article  PubMed  CAS  Google Scholar 

  • Ishitani T, Ninomiya-Tsuji J, Nagai S et al (1999) The TAK1-NLK-MAPK-related pathway antagonizes signalling between beta-catenin and transcription factor TCF. Nature 399:798–802

    Article  PubMed  CAS  Google Scholar 

  • Iso T, Kedes L, Hamamori Y (2003) HES and HERP families: multiple effectors of the Notch signaling pathway. J Cell Physiol 194:237–255

    Article  PubMed  CAS  Google Scholar 

  • Israsena N, Hu M, Fu W, Kan L, Kessler JA (2004) The presence of FGF2 signaling determines whether beta-catenin exerts effects on proliferation or neuronal differentiation of neural stem cells. Dev Biol 268:220–231

    Article  PubMed  CAS  Google Scholar 

  • Jang S, Cho HH, Cho YB, Park JS, Jeong HS (2010) Functional neural differentiation of human adipose tissue-derived stem cells using bFGF and forskolin. BMC Cell Biol 11:25

    Article  PubMed  Google Scholar 

  • Jiang J, Struhl G (1998) Regulation of the Hedgehog and Wingless signalling pathways by the F-box/WD40-repeat protein Slimb. Nature 391:493–496

    Article  PubMed  CAS  Google Scholar 

  • Kageyama R, Ohtsuka T, Hatakeyama J, Ohsawa R (2005) Roles of bHLH genes in neural stem cell differentiation. Exp Cell Res 306:343–348

    Article  PubMed  CAS  Google Scholar 

  • Kang SK, Lee DH, Bae YC, Kim HK, Baik SY, Jung JS (2003) Improvement of neurological deficits by intracerebral transplantation of human adipose tissue-derived stromal cells after cerebral ischemia in rats. Exp Neurol 183:355–366

    Article  PubMed  CAS  Google Scholar 

  • Karanu FN, Yuefei L, Gallacher L, Sakano S, Bhatia M (2003) Differential response of primitive human CD34- and CD34 ± hematopoietic cells to the Notch ligand Jagged-1. Leukemia 17:1366–1374

    Article  PubMed  CAS  Google Scholar 

  • Kasai M, Satoh K, Akiyama T (2005) Wnt signaling regulates the sequential onset of neurogenesis and gliogenesis via induction of BMPs. Genes Cells 10:777–783

    Article  PubMed  CAS  Google Scholar 

  • Katoh M, Katoh M (2006) Notch ligand, JAG1, is evolutionarily conserved target of canonical WNT signaling pathway in progenitor cells. Int J Mol Med 17:681–685

    PubMed  CAS  Google Scholar 

  • Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC (2005) Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hADAS) cells. Stem Cells 23:412–423

    Article  PubMed  CAS  Google Scholar 

  • Kim JM, Lee ST, Chu K et al (2007) Systemic transplantation of human adipose stem cells attenuated cerebral inflammation and degeneration in a hemorrhagic stroke model. Brain Res 1183:43–50

    Article  PubMed  CAS  Google Scholar 

  • Kulikov AV, Stepanova MS, Stvolinsky SL et al (2008) Application of multipotent mesenchymal stromal cells from human adipose tissue for compensation of neurological deficiency induced by 3-nitropropionic Acid in rats. Bull Exp Biol Med 145:514–519

    Article  PubMed  CAS  Google Scholar 

  • Lai EC (2004) Notch signaling: control of cell communication and cell fate. Development 131:965–973

    Article  PubMed  CAS  Google Scholar 

  • Lee HY, Kleber M, Hari L et al (2004) Instructive role of Wnt/beta-catenin in sensory fate specification in neural crest stem cells. Science 303:1020–1023

    Article  PubMed  CAS  Google Scholar 

  • Levy YS, Merims D, Panet H, Barhum Y, Melamed E, Offen D (2003) Induction of neuron-specific enolase promoter and neuronal markers in differentiated mouse bone marrow stromal cells. J Mol Neurosci 21:121–132

    Article  PubMed  CAS  Google Scholar 

  • Lewis J (1996) Neurogenic genes and vertebrate neurogenesis. Curr Opin Neurobiol 6:3–10

    Article  PubMed  CAS  Google Scholar 

  • Ling L, Nurcombe V, Cool SM (2009) Wnt signaling controls the fate of mesenchymal stem cells. Gene 433:1–7

    Article  PubMed  CAS  Google Scholar 

  • Lyden D, Young AZ, Zagzag D et al (1999) Id1 and Id3 are required for neurogenesis, angiogenesis and vascularization of tumour xenografts. Nature 401:670–677

    Article  PubMed  CAS  Google Scholar 

  • Mareschi K, Novara M, Rustichelli D et al (2006) Neural differentiation of human mesenchymal stem cells: Evidence for expression of neural markers and eag K ± channel types. Exp Hematol 34:1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Maric D, Maric I, Chang YH, Barker JL (2003) Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor on self-renewal and differentiation. J Neurosci 23:240–251

    PubMed  CAS  Google Scholar 

  • McCaffery PJ, Adams J, Maden M, Rosa-Molinar E (2003) Too much of a good thing: retinoic acid as an endogenous regulator of neural differentiation and exogenous teratogen. Eur J Neurosci 18:457–472

    Article  PubMed  CAS  Google Scholar 

  • McKay R (1997) Stem cells in the central nervous system. Science 276:66–71

    Article  PubMed  CAS  Google Scholar 

  • Morin PJ, Sparks AB, Korinek V et al (1997) Activation of beta-catenin-Tcf signaling in colon cancer by mutations in beta-catenin or APC. Science 275:1787–1790

    Article  PubMed  CAS  Google Scholar 

  • Papkoff J (1994) Identification and biochemical characterization of secreted Wnt-1 protein from P19 embryonal carcinoma cells induced to differentiate along the neuroectodermal lineage. Oncogene 9:313–317

    PubMed  CAS  Google Scholar 

  • Patapoutian A, Reichardt LF (2000) Roles of Wnt proteins in neural development and maintenance. Curr Opin Neurobiol 10:392–399

    Article  PubMed  CAS  Google Scholar 

  • Peroni D, Scambi I, Pasini A et al (2008) Stem molecular signature of adipose-derived stromal cells. Exp Cell Res 314:603–615

    Article  PubMed  CAS  Google Scholar 

  • Reya T, Duncan AW, Ailles L et al (2003) A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature 423:409–414

    Article  PubMed  CAS  Google Scholar 

  • Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system. Science 255:1707–1710

    Article  PubMed  CAS  Google Scholar 

  • Richards LJ, Kilpatrick TJ, Bartlett PF (1992) De novo generation of neuronal cells from the adult mouse brain. Proc Natl Acad Sci USA 89:8591–8595

    Article  PubMed  CAS  Google Scholar 

  • Ross SE, Hemati N, Longo KA et al (2000) Inhibition of adipogenesis by Wnt signaling. Science 289:950–953

    Article  PubMed  CAS  Google Scholar 

  • Safford KM, Hicok KC, Safford SD et al (2002) Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 294:371–379

    Article  PubMed  CAS  Google Scholar 

  • Salinas PC (2003) Synaptogenesis: Wnt and TGF-beta take centre stage. Curr Biol 13:R60–R62

    Article  PubMed  CAS  Google Scholar 

  • Tang K, Yang J, Gao X et al (2002) Wnt-1 promotes neuronal differentiation and inhibits gliogenesis in P19 cells. Biochem Biophys Res Commun 293:167–173

    Article  PubMed  CAS  Google Scholar 

  • Tao H, Rao R, Ma DD (2005) Cytokine-induced stable neuronal differentiation of human bone marrow mesenchymal stem cells in a serum/feeder cell-free condition. Dev Growth Differ 47:423–433

    Article  PubMed  CAS  Google Scholar 

  • Viti J, Gulacsi A, Lillien L (2003) Wnt regulation of progenitor maturation in the cortex depends on Shh or fibroblast growth factor 2. J Neurosci 23:5919–5927

    PubMed  CAS  Google Scholar 

  • Walsh J, Andrews PW (2003) Expression of Wnt and Notch pathway genes in a pluripotent human embryonal carcinoma cell line and embryonic stem cell. APMIS 111:197–210, discussion 210–1

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Zhao L, Zhong J et al (2009) Adipose stromal cells-secreted neuroprotective media against neuronal apoptosis. Neurosci Lett 462:76–79

    Article  PubMed  CAS  Google Scholar 

  • Willert K, Brown JD, Danenberg E et al (2003) Wnt proteins are lipid-modified and can act as stem cell growth factors. Nature 423:448–452

    Article  PubMed  CAS  Google Scholar 

  • Woodbury D, Schwarz EJ, Prockop DJ, Black IB (2000) Adult rat and human bone marrow stromal cells differentiate into neurons. J Neurosci Res 61:364–370

    Article  PubMed  CAS  Google Scholar 

  • Yu X, Alder JK, Chun JH et al (2006) HES1 inhibits cycling of hematopoietic progenitor cells via DNA binding. Stem Cells 24:876–888

    Article  PubMed  CAS  Google Scholar 

  • Zechner D, Fujita Y, Hulsken J et al (2003) beta-Catenin signals regulate cell growth and the balance between progenitor cell expansion and differentiation in the nervous system. Dev Biol 258:406–418

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Ashjian P et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13:4279–4295

    Article  PubMed  CAS  Google Scholar 

  • Zuk PA, Zhu M, Mizuno H et al (2001) Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 7:211–228

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the Fundación para el desarrollo de las Ciencias Básicas (FUCIBA) and the Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires, Argentina. Financial support by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) through a scholarship to Alejandra Johana Cardozo is gratefully acknowledged. D.E. Gomez is a member of CONICET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pablo Francisco Argibay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardozo, A.J., Gómez, D.E. & Argibay, P.F. Transcriptional Characterization of Wnt and Notch Signaling Pathways in Neuronal Differentiation of Human Adipose Tissue-Derived Stem Cells. J Mol Neurosci 44, 186–194 (2011). https://doi.org/10.1007/s12031-011-9503-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9503-9

Keywords

Navigation