Skip to main content

Advertisement

Log in

Insulin-Like Growth Factor mRNA Binding Protein 3 (IMP3) is Differentially Expressed in Benign and Malignant Follicular Patterned Thyroid Tumors

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Insulin-like growth factor mRNA binding protein 3 (IMP3) is an mRNA-binding protein that regulates transcription of insulin-like growth factor II affecting cell proliferation during embryogenesis. It is highly expressed in carcinomas of the pancreas, stomach, colon, rectum, kidneys, uterine cervix, lung, and ovary. The purpose of our study was to evaluate IMP3 expression in thyroid follicular lesions, to determine whether it has a role in differentiating among these lesions, and to understand their biological relationships. We immunostained 219 thyroid lesions selected from our surgical pathology archives including 14 hyperplastic colloid nodules (CN), 19 Hashimoto's thyroiditis (HT), two Graves disease (GD), ten Hürthle cell adenoma (HCA), 20 follicular adenoma (FA), 37 conventional papillary thyroid carcinoma (PTC), 60 follicular variant of papillary carcinoma (FVPC), 19 Hürthle cell carcinoma (HCC), 32 follicular carcinoma (FC), and six poorly differentiated/anaplastic carcinoma. Immunohistochemistry was performed on formalin-fixed sections using monoclonal antibody to IMP3. Clinicopathological data were also reviewed. In all cases, residual thyroid tissue, CN, HT, GD, HCA, and FA were completely negative for IMP3 staining. Of the 60 FVPC, 23 tumors (38%) were positive for IMP3, with 13 of these (22%) showing very strong staining (3+). Of the 32 FC, 22 tumors (69%) were positive, with seven (22%) showing very strong staining (3+). Furthermore, 33 out of 37 cases (89%) of PTC were negative for IMP3. In all four PTC cases that did stain positive, staining was weak–moderate (1–2+). Similarly, 15 out of 19 cases (79%) of HCC were negative. No significant correlation was found between pathologic tumor characteristics and IMP3 expression in differentiated follicular pattern thyroid carcinoma. With 100% specificity and 69% sensitivity for FC as compared to FA and 100% specificity for FVPC, again compared to FA, IMP3 has the potential to be diagnostically useful in differentiating malignant and benign follicular pattern thyroid lesions. This study also points to a possible common biological relationship between FC and FVPC that requires further investigation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Baloch ZW, Livolsi VA. Follicular-patterned lesions of the thyroid: the bane of the pathologist. Am J Clin Pathol. 2002;17(1):143–150. doi:10.1309/8VL9-ECXY-NVMX-2RQF.

    Article  Google Scholar 

  2. Khan AN, V. Pathology of Thyroid Gland. In: Lloyd RV, ed. Endocrine Pathology: Differential Diagnosis and Molecular Advances. Totowa, NJ: Humana Press Inc.; 2003:153-189.

    Google Scholar 

  3. Rezk S, Khan A. Role of immunohistochemistry in the diagnosis and progression of follicular epithelium-derived thyroid carcinoma. Appl Immunohistochem Mol Morphol 13(3):256-264, 2005. doi:10.1097/01.pai.0000142823.56602.fe.

    Article  PubMed  Google Scholar 

  4. Saggiorato E, De Pompa R, Volante M, et al. Characterization of thyroid ‘follicular neoplasms’ in fine-needle aspiration cytological specimens using a panel of immunohistochemical markers: a proposal for clinical application. Endocr-Relat Cancer 12(2):305-317, 2005. doi:10.1677/erc.1.00944.

    Article  PubMed  CAS  Google Scholar 

  5. Savin S, Cvejic D, Isic T, Paunovic I, Tatic S, Havelka M. The efficacy of the thyroid peroxidase marker for distinguishing follicular thyroid carcinoma from follicular adenoma. Experimental oncology 2006;28(1):70-4, 2006.

    CAS  Google Scholar 

  6. Wang S, Lloyd RV, Hutzler MJ, et al. Expression of eukaryotic translation initiation factors 4E and 2alpha correlates with the progression of thyroid carcinoma. Thyroid 11(12):1101-7, 2001. doi:10.1089/10507250152740939.

    Article  PubMed  CAS  Google Scholar 

  7. Wang S, Lloyd RV, Hutzler MJ, Safran MS, Patwardhan NA, Khan A. The role of cell cycle regulatory protein, cyclin D1, in the progression of thyroid cancer. Mod Pathol 13(8):882-7, 2000. doi:10.1038/modpathol.3880157.

    Article  PubMed  CAS  Google Scholar 

  8. Wang S, Wuu J, Savas L, Patwardhan N, Khan A. The role of cell cycle regulatory proteins, cyclin D1, cyclin E, and p27 in thyroid carcinogenesis. Human Pathol 29(11):1304-9, 1998. doi:10.1016/S0046-8177(98)90262-3.

    Article  CAS  Google Scholar 

  9. Bartolazzi A, Gasbarri A, Papotti M, et al. Application of an immunodiagnostic method for improving preoperative diagnosis of nodular thyroid lesions. Lancet. 2001;357(9269):1644–1650. doi:10.1016/S0140-6736(00)04817-0.

    Article  PubMed  CAS  Google Scholar 

  10. Khan A, Baker SP, Patwardhan NA, Pullman JM. CD57 (Leu-7) expression is helpful in diagnosis of the follicular variant of papillary thyroid carcinoma. Virchows Arch. 1998;5:427–432. doi:10.1007/s004280050186.

    Article  Google Scholar 

  11. Scognamiglio T, Hyjek E, Kao J, Chen YT. Diagnostic usefulness of HBME1, galectin-3, CK19, and CITED1 and evaluation of their expression in encapsulated lesions with questionable features of papillary thyroid carcinoma. Am J Clin Pathol 126(5):700-8, 2006. doi:10.1309/044V86JN2W3CN5YB.

    Article  PubMed  CAS  Google Scholar 

  12. Ito Y, Yoshida H, Tomoda C, et al. Galectin-3 expression in follicular tumours: an immunohistochemical study of its use as a marker of follicular carcinoma. Pathology 37(4):296-8, 2005. doi:10.1080/00313020500169545.

    Article  PubMed  CAS  Google Scholar 

  13. Mehrotra P, Okpokam A, Bouhaidar R, et al. Galectin-3 does not reliably distinguish benign from malignant thyroid neoplasms. Histopathology 45(5):493-500, 2004. doi:10.1111/j.1365-2559.2004.01978.x.

    Article  PubMed  CAS  Google Scholar 

  14. Mueller-Pillasch F, Lacher U, Wallrapp C, et al. Cloning of a gene highly overexpressed in cancer coding for a novel KH-domain containing protein. Oncogene 14(22):2729-2733, 1997. doi:10.1038/sj.onc.1201110.

    Article  PubMed  CAS  Google Scholar 

  15. Mueller-Pillasch F, Pohl B, Wilda M, et al. Expression of the highly conserved RNA binding protein KOC in embryogenesis. Mech Dev 88(1):95-9, 1999. doi:10.1016/S0925-4773(99)00160-4.

    Article  PubMed  CAS  Google Scholar 

  16. Yantiss RK, Woda BA, Fanger GR, et al. KOC (K homology domain containing protein overexpressed in cancer): a novel molecular marker that distinguishes between benign and malignant lesions of the pancreas. Am J Surg Pathol 29(2):188-195, 2005. doi:10.1097/01.pas.0000149688.98333.54.

    Article  PubMed  Google Scholar 

  17. Hanley KZ, Facik MS, Bourne PA, et al. Utility of anti-L523S antibody in the diagnosis of benign and malignant serous effusions. Cancer 114(1):49-56, 2008. doi:10.1002/cncr.23254.

    Article  PubMed  CAS  Google Scholar 

  18. Jiang Z, Chu PG, Woda BA, et al. Analysis of RNA-binding protein IMP3 to predict metastasis and prognosis of renal-cell carcinoma: a retrospective study. Lancet Oncol 7(7):556-564, 2006. doi:10.1016/S1470-2045(06)70732-X.

    Article  PubMed  CAS  Google Scholar 

  19. Jiang Z, Lohse CM, Chu PG, et al. Oncofetal protein IMP3: a novel molecular marker that predicts metastasis of papillary and chromophobe renal cell carcinomas. Cancer 112(12):2676-2682, 2008. doi:10.1002/cncr.23484.

    Article  PubMed  Google Scholar 

  20. Li C, Rock KL, Woda BA, Jiang Z, Fraire AE, Dresser K. IMP3 is a novel biomarker for adenocarcinoma in situ of the uterine cervix: an immunohistochemical study in comparison with p16(INK4a) expression. Mod Pathol 20(2):242-7, 2007. doi:10.1038/modpathol.3800735.

    Article  PubMed  CAS  Google Scholar 

  21. Simon R, Bourne PA, Yang Q, et al. Extrapulmonary small cell carcinomas express K homology domain containing protein overexpressed in cancer, but carcinoid tumors do not. Human Pathol 38(8):1178-1183, 2007. doi:10.1016/j.humpath.2007.02.001.

    Article  CAS  Google Scholar 

  22. Wang T, Fan L, Watanabe Y, et al. L523S, an RNA-binding protein as a potential therapeutic target for lung cancer. Br J Cancer 88(6):887-894, 2003. doi:10.1038/sj.bjc.6600806.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang JY, Chan EK, Peng XX, Tan EM. A novel cytoplasmic protein with RNA-binding motifs is an autoantigen in human hepatocellular carcinoma. J Exp Med 189(7):1101-10, 1999. doi:10.1084/jem.189.7.1101.

    Article  PubMed  CAS  Google Scholar 

  24. Zheng W, Yi X, Fadare O, et al. The oncofetal protein IMP3: a novel biomarker for endometrial serous carcinoma. Am J Surg Pathol 32(2):304-315, 2008. doi:10.1097/PAS.0b013e3181483ff8.

    Article  PubMed  Google Scholar 

  25. Mueller F, Bommer M, Lacher U, et al. KOC is a novel molecular indicator of malignancy. Br J Cancer 88(5):699-701, 2003. doi:10.1038/sj.bjc.6600790.

    Article  PubMed  CAS  Google Scholar 

  26. Asa SL. The role of immunohistochemical markers in the diagnosis of follicular-patterned lesions of the thyroid. Endocr Pathol 16(4):295-309, 2005. doi:10.1385/EP:16:4:295.

    Article  PubMed  Google Scholar 

  27. Fonseca E, Soares P, Cardoso-Oliveira M, Sobrinho-Simoes M. Diagnostic criteria in well-differentiated thyroid carcinomas. Endocr Pathol 17(2):109-117, 2006. doi:10.1385/EP:17:2:109.

    Article  PubMed  CAS  Google Scholar 

  28. Cheung CC, Ezzat S, Freeman JL, Rosen IB, Asa SL. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol 14(4):338-342, 2001. doi:10.1038/modpathol.3880312.

    Article  PubMed  CAS  Google Scholar 

  29. Mai KT, Ford JC, Yazdi HM, Perkins DG, Commons AS. Immunohistochemical study of papillary thyroid carcinoma and possible papillary thyroid carcinoma-related benign thyroid nodules. Pathol Res Pract 196(8):533-540, 2000.

    PubMed  CAS  Google Scholar 

  30. Raphael SJ, Apel RL, Asa SL. Brief report: detection of high-molecular-weight cytokeratins in neoplastic and non-neoplastic thyroid tumors using microwave antigen retrieval. Mod Pathol 8(8):870-2, 1995.

    PubMed  CAS  Google Scholar 

  31. Raphael SJ, McKeown-Eyssen G, Asa SL. High-molecular-weight cytokeratin and cytokeratin-19 in the diagnosis of thyroid tumors. Mod Pathol 7(3):295-300, 1994.

    PubMed  CAS  Google Scholar 

  32. Sahoo S, Hoda SA, Rosai J, DeLellis RA. Cytokeratin 19 immunoreactivity in the diagnosis of papillary thyroid carcinoma: a note of caution. Am J Clin Pathol 116(5):696-702, 2001. doi:10.1309/6D9D-7JCM-X4T5-NNJY.

    Article  PubMed  CAS  Google Scholar 

  33. Goretzki PE, Simon D, Dotzenrath C, Schulte KM, Roher HD. Growth regulation of thyroid and thyroid tumors in humans. World J Surg 24(8):913-922, 2000. doi:10.1007/s002680010174.

    Article  PubMed  CAS  Google Scholar 

  34. Castro P, Eknaes M, Teixeira MR, et al. Adenomas and follicular carcinomas of the thyroid display two major patterns of chromosomal changes. J Pathol 206(3):305-311, 2005. doi:10.1002/path.1772.

    Article  PubMed  CAS  Google Scholar 

  35. Castro P, Rebocho AP, Soares RJ, et al. PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 91(1):213-220, 2006. doi:10.1210/jc.2005-1336.

    Article  PubMed  CAS  Google Scholar 

  36. Castro P, Roque L, Magalhaes J, Sobrinho-Simoes M. A subset of the follicular variant of papillary thyroid carcinoma harbors the PAX8-PPARgamma translocation. Int J Surg Pathol 13(3):235-8, 2005. doi:10.1177/106689690501300301.

    Article  PubMed  Google Scholar 

  37. Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma An unusually high prevalence of ras mutations. Am J Clin Pathol 120(1):71-7, 2003. doi:10.1309/ND8D9LAJTRCTG6QD.

    Article  PubMed  CAS  Google Scholar 

  38. Yantiss RK, Cosar E, Fischer AH. Use of IMP3 in identification of carcinoma in fine needle aspiration biopsies of pancreas. Acta cytologica 52(2):133-8, 2008.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf Khan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slosar, M., Vohra, P., Prasad, M. et al. Insulin-Like Growth Factor mRNA Binding Protein 3 (IMP3) is Differentially Expressed in Benign and Malignant Follicular Patterned Thyroid Tumors. Endocr Pathol 20, 149–157 (2009). https://doi.org/10.1007/s12022-009-9079-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-009-9079-x

Keywords

Navigation