Skip to main content
Log in

Immortalization of Mesenchymal Stromal Cells by TERT Affects Adenosine Metabolism and Impairs their Immunosuppressive Capacity

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Mesenchymal stromal cells (MSCs) are promising candidates for cell-based therapies, mainly due to their unique biological properties such as multipotency, self-renewal and trophic/immunomodulatory effects. However, clinical use has proven complex due to limitations such as high variability of MSCs preparations and high number of cells required for therapies. These challenges could be circumvented with cell immortalization through genetic manipulation, and although many studies show that such approaches are safe, little is known about changes in other biological properties and functions of MSCs. In this study, we evaluated the impact of MSCs immortalization with the TERT gene on the purinergic system, which has emerged as a key modulator in a wide variety of pathophysiological conditions. After cell immortalization, MSCs-TERT displayed similar immunophenotypic profile and differentiation potential to primary MSCs. However, analysis of gene and protein expression exposed important alterations in the purinergic signaling of in vitro cultured MSCs-TERT. Immortalized cells upregulated the CD39/NTPDase1 enzyme and downregulated CD73/NT5E and adenosine deaminase (ADA), which had a direct impact on their nucleotide/nucleoside metabolism profile. Despite these alterations, adenosine did not accumulate in the extracellular space, due to increased uptake. MSCs-TERT cells presented an impaired in vitro immunosuppressive potential, as observed in an assay of co-culture with lymphocytes. Therefore, our data suggest that MSCs-TERT have altered expression of key enzymes of the extracellular nucleotides/nucleoside control, which altered key characteristics of these cells and can potentially change their therapeutic effects in tissue engineering in regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Galipeau, J., & Sensébé, L. (2018). Mesenchymal stromal cells: Clinical challenges and therapeutic opportunities. Cell Stem Cell, 22, 824–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. da Silva, M. L., Fontes, A. M., Covas, D. T., & Caplan, A. I. (2009). Mechanisms involved in the therapeutic properties of mesenchymal stem cells. Cytokine & Growth Factor Reviews, 20, 419–427.

    Google Scholar 

  3. Uccelli, A., Moretta, L., & Pistoia, V. (2008). Mesenchymal stem cells in health and disease. Nature Reviews. Immunology, 8, 726–736.

    CAS  PubMed  Google Scholar 

  4. Salem, H. K., & Thiemermann, C. (2010). Mesenchymal stromal cells: Current understanding and clinical status. Stem Cells, 28, 585–596.

    CAS  PubMed  Google Scholar 

  5. Iser, I. C., Ceschini, S. M., Onzi, G. R., Bertoni, A. P. S., Lenz, G., & Wink, M. R. (2016). Conditioned medium from adipose-derived stem cells (ADSCs) promotes epithelial-to-Mesenchymal-like transition (EMT-like) in Glioma cells in vitro. Molecular Neurobiology, 53, 7184–7199.

    CAS  PubMed  Google Scholar 

  6. Beckenkamp, L. R., Souza, L. E. B., Melo, F. U. F., Thomé, C. H., Magalhães, D. A. R., Palma, P. V. B., & Covas, D. T. (2018). Comparative characterization of CD271 + and CD271 subpopulations of CD34 + human adipose-derived stromal cells. Journal of Cellular Biochemistry, 119, 3873–3884.

    CAS  PubMed  Google Scholar 

  7. Onzi, G. R., Ledur, P. F., Hainzenreder, L. D., Bertoni, A. P. S., Silva, A. O., Lenz, G., & Wink, M. R. (2016). Analysis of the safety of mesenchymal stromal cells secretome for glioblastoma treatment. Cytotherapy, 18, 828–837.

    CAS  PubMed  Google Scholar 

  8. Sous Naasani, L. I., Rodrigues, C., Azevedo, J. G., Damo Souza, A. F., Buchner, S., & Wink, M. R. (2018). Comparison of human denuded amniotic membrane and porcine small intestine submucosa as scaffolds for Limbal Mesenchymal stem cells. Stem Cell Rev Reports, 14, 744–754.

    CAS  Google Scholar 

  9. Rodrigues, C., Naasani, L. I. S., Zanatelli, C., Paim, T. C., Azevedo, J. G., de Lima, J. C., da Cruz Fernandes, M., Buchner, S., & Wink, M. R. (2019). Bioglass 45S5: Structural characterization of short range order and analysis of biocompatibility with adipose-derived mesenchymal stromal cells in vitro and in vivo. Materials Science and Engineering: C, 103, 109781.

    CAS  Google Scholar 

  10. Sous Naasani, L. I., Damo Souza, A. F., Rodrigues, C., Vedovatto, S., Azevedo, J. G., Santin Bertoni, A. P., da Cruz Fernandes, M., Buchner, S., & Wink, M. R. (2019). Decellularized human amniotic membrane associated with adipose derived mesenchymal stromal cells as a bioscaffold: Physical, histological and molecular analysis. Biochemical Engineering Journal, 152, 107366.

    CAS  Google Scholar 

  11. Glaser, T., Cappellari, A. R., Pillat, M. M., Iser, I. C., Wink, M. R., Battastini, A. M. O., & Ulrich, H. (2012). Perspectives of purinergic signaling in stem cell differentiation and tissue regeneration. Purinergic Signal, 8, 523–537.

    CAS  PubMed  Google Scholar 

  12. Naji, A., Eitoku, M., Favier, B., Deschaseaux, F., Rouas-Freiss, N., & Suganuma, N. (2019). Biological functions of mesenchymal stem cells and clinical implications. Cellular and Molecular Life Sciences, 76, 3323–3348.

    CAS  PubMed  Google Scholar 

  13. Andrzejewska, A., Lukomska, B., & Janowski, M. (2019). Concise review: Mesenchymal stem cells: From roots to boost. Stem Cells, 37, 855–864.

    PubMed  PubMed Central  Google Scholar 

  14. Oedayrajsingh-Varma, M. J., van Ham, S. M., Knippenberg, M., Helder, M. N., Klein-Nulend, J., Schouten, T. E., Ritt, M. J. P. F., & van Milligen, F. J. (2006). Adipose tissue-derived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy, 8, 166–177.

    CAS  PubMed  Google Scholar 

  15. Turinetto, V., Vitale, E., & Giachino, C. (2016). Senescence in human mesenchymal stem cells: Functional changes and implications in stem cell-based therapy. International Journal of Molecular Sciences, 17(7), 1164.

    PubMed Central  Google Scholar 

  16. Wagner, W., Horn, P., Castoldi, M., Diehlmann, A., Bork, S., Saffrich, R., Benes, V., Blake, J., Pfister, S., Eckstein, V., & Ho, A. D. (2008). Replicative senescence of mesenchymal stem cells: A continuous and organized process. PLoS One, 3(5), e2213.

    PubMed  PubMed Central  Google Scholar 

  17. Baxter, M. A. (2004). Study of telomere length reveals rapid aging of human marrow stromal cells following in vitro expansion. Stem Cells, 22, 675–682.

    CAS  PubMed  Google Scholar 

  18. Lee, W. Y. W., Zhang, T., Lau, C. P. Y., Wang, C. C., Chan, K. M., & Li, G. (2013). Immortalized human fetal bone marrow-derived mesenchymal stromalcell expressing suicide gene for anti-tumor therapy in vitro andin vivo. Cytotherapy, 15, 1484–1497.

    CAS  PubMed  Google Scholar 

  19. Nishioka, K., Fujimori, Y., Hashimoto-Tamaoki, T., Kai, S., Qiu, H., Kobayashi, N., Tanaka, N., Westerman, K. A., Leboulch, P., & Hara, H. (2003). Immortalization of bone marrow-derived human mesenchymal stem cells by removable simian virus 40T antigen gene: Analysis of the ability to support expansion of cord blood hematopoietic progenitor cells. International Journal of Oncology, 23, 925–932.

    CAS  PubMed  Google Scholar 

  20. Hung, S. C., Yang, D. M., Chang, C. F., Lin, R. J., Wang, J. S., Low-Tone Ho, L., & Yang, W. K. (2004). Immortalization without neoplastic transformation of human mesenchymal stem cells by transduction with HPV16 E6/E7 genes. International Journal of Cancer, 110, 313–319.

    CAS  PubMed  Google Scholar 

  21. Balducci, L., Blasi, A., Saldarelli, M., Soleti, A., Pessina, A., Bonomi, A., Coccè, V., Dossena, M., Tosetti, V., Ceserani, V., Navone, S., Falchetti, M., Parati, E., & Alessandri, G. (2014). Immortalization of human adipose-derived stromal cells: Production of cell lines with high growth rate, mesenchymal marker expression and capability to secrete high levels of angiogenic factors. Stem Cell Research & Therapy, 5(3), 63.

    Google Scholar 

  22. Piper, S. L., Wang, M., Yamamoto, A., Malek, F., Luu, A., Kuo, A. C., & Kim, H. T. (2012). Inducible immortality in hTERT-human mesenchymal stem cells. Journal of Orthopaedic Research, 30, 1879–1885.

    CAS  PubMed  Google Scholar 

  23. Bodnar AG, Ouellette M, Frolkis M, et al (1998) Extension of life-span by introduction of telomerase into normal human cells. Science (80- ) 279:349–352.

  24. Lu, S., Wang, J., Ye, J., Zou, Y., Zhu, Y., Wei, Q., Wang, X., Tang, S., Liu, H., Fan, J., Zhang, F., Farina, E. M., Mohammed, M. M., Song, D., Liao, J., Huang, J., Guo, D., Lu, M., Liu, F., Liu, J., Li, L., Ma, C., Hu, X., Lee, M. J., Reid, R. R., Ameer, G. A., Zhou, D., & He, T. (2016). Bone morphogenetic protein 9 (BMP9) induces effective bone formation from reversibly immortalized multipotent adipose-derived (iMAD) mesenchymal stem cells. American Journal of Translational Research, 8, 3710–3730.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu, X., Li, L., Yu, X., Zhang, R., Yan, S., Zeng, Z., Shu, Y., Zhao, C., Wu, X., Lei, J., Li, Y., Zhang, W., Yang, C., Wu, K., Wu, Y., An, L., Huang, S., Ji, X., Gong, C., Yuan, C., Zhang, L., Liu, W., Huang, B., Feng, Y., Zhang, B., Haydon, R. C., Luu, H. H., Reid, R. R., Lee, M. J., Wolf, J. M., Yu, Z., & He, T. C. (2017). CRISPR/Cas9-mediated reversibly immortalized mouse bone marrow stromal stem cells (BMSCs) retain multipotent features of mesenchymal stem cells (MSCs). Oncotarget, 8, 111847–111865.

    PubMed  PubMed Central  Google Scholar 

  26. Harley, C. B. (2002). Telomerase is not an oncogene. Oncogene, 21, 494–502.

    CAS  PubMed  Google Scholar 

  27. Jiang, X. R., Jimenez, G., Chang, E., Frolkis, M., Kusler, B., Sage, M., Beeche, M., Bodnar, A. G., Wahl, G. M., Tlsty, T. D., & Chiu, C. P. (1999). Telomerase expression in human somatic cells does not induce changes associated with a transformed phenotype. Nature Genetics, 21, 111–1114.

    CAS  PubMed  Google Scholar 

  28. Kassem, M., Abdallah, B. M., Yu, Z., Ditzel, N., & Burns, J. S. (2004). The use of hTERT-immortalized cells in tissue engineering. Cytotechnology, 45, 39–46.

    PubMed  PubMed Central  Google Scholar 

  29. Huang, G. P., Pan, Z. J., Huang, J. P., Yang, J. F., Guo, C. J., Wang, Y. G., Zheng, Q., Chen, R., Xu, Y. L., Wang, G. Z., Xi, Y. M., Shen, D., Jin, J., & Wang, J. F. (2008). Proteomic analysis of human bone marrow mesenchymal stem cells transduced with human telomerase reverse transcriptase gene during proliferation. Cell Proliferation, 41, 625–644.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Burnstock, G. (2018). The therapeutic potential of purinergic signalling. Biochemical Pharmacology, 151, 157–165.

    CAS  PubMed  Google Scholar 

  31. de Oliveira, B. M., Carvalho, J. L., & Saldanha-Araujo, F. (2016). Adenosine production: A common path for mesenchymal stem-cell and regulatory T-cell-mediated immunosuppression. Purinergic Signal, 12, 595–609.

    Google Scholar 

  32. Kaebisch, C., Schipper, D., Babczyk, P., & Tobiasch, E. (2015). The role of purinergic receptors in stem cell differentiation. Computational and Structural Biotechnology Journal, 13, 75–84.

    CAS  PubMed  Google Scholar 

  33. Roszek, K., & Wujak, M. (2018). How to influence the mesenchymal stem cells fate? Emerging role of ectoenzymes metabolizing nucleotides. Journal of Cellular Physiology, 234, 320–334.

    PubMed  Google Scholar 

  34. Ferrari Davide D, Gulinelli S, Salvestrini V, et al (2011) Purinergic stimulation of human mesenchymal stem cells potentiates their chemotactic response to CXCL12 and increases the homing capacity and production of proinflammatory cytokines. Exp Hematol 39:360-374.e5.

  35. Coppi E, Pugliese AM, Urbani S, et al (2007) ATP modulates cell proliferation and elicits two different electrophysiological responses in human Mesenchymal stem cells. Stem Cells 25:1840–1849.

  36. Ciciarello, M., Zini, R., Rossi, L., et al. (2012). Extracellular purines promote the differentiation of human bone marrow-derived Mesenchymal stem cells to the Osteogenic and Adipogenic lineages. Stem Cells and Development, 22, 1097–1111.

    PubMed  PubMed Central  Google Scholar 

  37. Counter, C. M., Hahn, W. C., Wei, W., Caddle, S. D., Beijersbergen, R. L., Lansdorp, P. M., Sedivy, J. M., & Weinberg, R. A. (1998). Dissociation among in vitro telomerase activity, telomere maintenance, and cellular immortalization. Proceedings of the National Academy of Sciences of the United States of America, 95, 14723–14728.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Tamajusuku, A. S. K., Villodre, E. S., Paulus, R., Coutinho-Silva, R., Battasstini, A. M. O., Wink, M. R., & Lenz, G. (2010). Characterization of ATP-induced cell death in the GL261 mouse glioma. Journal of Cellular Biochemistry, 109, 983–991.

    CAS  PubMed  Google Scholar 

  39. Albesiano, E., Messmer, B. T., Damle, R. N., et al. (2003). Activation induced cytidine deaminase in chronic lymphocytic leukemia B cells: Expression as multiple forms in a dynamic, variably sized fraction of the clone. Neoplasia, 102, 3333–3340.

    CAS  Google Scholar 

  40. Wink, M. R., Braganhol, E., Tamajusuku, A. S. K. K., et al. (2003). Extracellular adenine nucleotides metabolism in astrocyte cultures from different brain regions. Neurochemistry International, 43, 621–628.

    CAS  PubMed  Google Scholar 

  41. Chan, K. M., Delfert, D., & Junger, K. D. (1986). A direct colorimetric assay for Ca2+ −stimulated ATPase activity. Analytical Biochemistry, 157, 375–380.

    CAS  PubMed  Google Scholar 

  42. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    CAS  PubMed  Google Scholar 

  43. Galanti, B., & Giusti, G. (1966). Direct colorimetric method for the determination of adenosine deaminase and 5-AMP deaminase in the blood. Bollettino della Società Italiana di Biologia Sperimentale, 42, 1316–1320.

    CAS  PubMed  Google Scholar 

  44. Iser IC, Ceschini SM, Onzi GR, et al (2015) Conditioned medium from adipose-derived stem cells ( ADSCs ) promotes epithelial-to-mesenchymal-like transition ( EMT-Like ) in glioma cells in vitro. 53 (10):7184–7199.

  45. Peng, H., Hao, Y., Mousawi, F., Roger, S., Li, J., Sim, J. A., Ponnambalam, S., Yang, X., & Jiang, L. H. (2016). Purinergic and store-operated Ca 2+ signaling mechanisms in Mesenchymal stem cells and their roles in ATP-induced stimulation of cell migration. Stem Cells, 34, 2102–2114.

    CAS  PubMed  Google Scholar 

  46. Jiang, L. H., Mousawi, F., Yang, X., & Roger, S. (2017). ATP-induced Ca2+−signalling mechanisms in the regulation of mesenchymal stem cell migration. Cellular and Molecular Life Sciences, 74, 3697–3710.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Saldanha-Araujo, F., Ferreira, F. I. S., Palma, P. V., Araujo, A. G., Queiroz, R. H. C., Covas, D. T., Zago, M. A., & Panepucci, R. A. (2011). Mesenchymal stromal cells up-regulate CD39 and increase adenosine production to suppress activated T-lymphocytes. Stem Cell Research, 7, 66–74.

    CAS  PubMed  Google Scholar 

  48. Sattler, C., Steinsdoerfer, M., Offers, M., Fischer, E., Schierl, R., Heseler, K., Däubener, W., & Seissler, J. (2011). Inhibition of T-cell proliferation by murine multipotent mesenchymal stromal cells is mediated by CD39 expression and adenosine generation. Cell Transplantation, 20, 1221–1230.

    PubMed  Google Scholar 

  49. Cavaliere, F., Donno, C., & Ambrosi, N. (2015). Purinergic signaling: A common pathway for neural and mesenchymal stem cell maintenance and differentiation. Frontiers in Cellular Neuroscience, 9, 1–8.

    Google Scholar 

  50. Zippel, N., Limbach, C. A., Ratajski, N., et al. (2011). Purinergic receptors influence the differentiation of human Mesenchymal stem cells. Stem Cells and Development, 21, 884–900.

    PubMed  Google Scholar 

  51. Bernardo, M. E., Pagliara, D., & Locatelli, F. (2012). Mesenchymal stromal cell therapy: A revolution in regenerative medicine? Bone Marrow Transplantation, 47, 164–171.

    CAS  PubMed  Google Scholar 

  52. Jiang, W., & Xu, J. (2019). Immune modulation by mesenchymal stem cells. Cell Proliferation, 53(1), e12712.

    PubMed  PubMed Central  Google Scholar 

  53. Gao, F., Chiu, S. M., Motan, D. A. L., Zhang, Z., Chen, L., Ji, H. L., Tse, H. F., Fu, Q. L., & Lian, Q. (2016). Mesenchymal stem cells and immunomodulation: Current status and future prospects. Cell Death & Disease, 7(1), e2062.

    CAS  Google Scholar 

  54. Nakahara, H., Misawa, H., Hayashi, T., Kondo, E., Yuasa, T., Kubota, Y., Seita, M., Kawamoto, H., Hassan, W. A. R. A., Hassan, R. A. R. A., Javed, S. M., Tanaka, M., Endo, H., Noguchi, H., Matsumoto, S., Takata, K., Tashiro, Y., Nakaji, S., Ozaki, T., & Kobayashi, N. (2009). Bone repair by transplantation of hTERT-immortalized human mesenchymal stem cells in mice. Transplantation, 88, 346–353.

    PubMed  Google Scholar 

  55. Burns, J. S., Rasmussen, P. L., Larsen, K. H., Schrøder, H. D., & Kassem, M. (2010). Parameters in three-dimensional Osteospheroids of Telomerized human Mesenchymal (stromal) stem cells grown on Osteoconductive scaffolds that predict In Vivo bone-forming potential. Tissue Engineering. Part A, 16, 2331–2342.

    CAS  PubMed  Google Scholar 

  56. Honma, T., Honmou, O., Iihoshi, S., Harada, K., Houkin, K., Hamada, H., & Kocsis, J. D. (2006). Intravenous infusion of immortalized human mesenchymal stem cells protects against injury in a cerebral ischemia model in adult rat. Experimental Neurology, 199, 56–66.

    CAS  PubMed  Google Scholar 

  57. Zhao, F., Qu, Y., Liu, H., du, B., & Mu, D. (2014). Umbilical cord blood mesenchymal stem cells co-modified by TERT and BDNF: A novel neuroprotective therapy for neonatal hypoxic-ischemic brain damage. International Journal of Developmental Neuroscience, 38, 147–154.

    CAS  PubMed  Google Scholar 

  58. Li, J., Liu, W., & Yao, W. (2019). Immortalized human bone marrow derived stromal cells in treatment of transient cerebral ischemia in rats. J Alzheimer’s Dis, 69, 871–880.

    CAS  Google Scholar 

  59. Weber, C., Pohl, S., Poertner, R., et al. (2008). Development of a production process for stem cell based cell therapeutic implants using disposable bioreactor systems. In IFMBE proceedings (pp. 2277–2280). Berlin, Heidelberg: Springer.

    Google Scholar 

  60. Siska, E. K., Weisman, I., Romano, J., Ivics, Z., Izsvák, Z., Barkai, U., Petrakis, S., & Koliakos, G. (2017). Generation of an immortalized mesenchymal stem cell line producing a secreted biosensor protein for glucose monitoring. PLoS One, 12(9), e0185498.

    PubMed  PubMed Central  Google Scholar 

  61. Chiu, C.-H., Chang, T.-H., Chang, S.-S., Chang, G. J., Chen, A. C. Y., Cheng, C. Y., Chen, S. C., Fu, J. F., Wen, C. J., & Chan, Y. S. (2020). Application of bone marrow–derived Mesenchymal stem cells for muscle healing after contusion injury in mice. The American Journal of Sports Medicine, 48(5), 1226–1235.

    PubMed  Google Scholar 

  62. Zhu, G. Q., Jeon, S. H., Lee, K. W., et al. (2020). Engineered stem cells improve neurogenic bladder by overexpressing SDF-1 in a pelvic nerve injury rat model. Cell Transplantation, 29, 963689720902466.

    PubMed  Google Scholar 

  63. Bourgine, P., Le Magnen, C., Pigeot, S., et al. (2014). Combination of immortalization and inducible death strategies to generate a human mesenchymal stromal cell line with controlled survival. Stem Cell Research, 12, 584–598.

    CAS  PubMed  Google Scholar 

  64. Ge, W., Jiang, J., Arp, J., Liu, W., Garcia, B., & Wang, H. (2010). Regulatory T-cell generation and kidney allograft tolerance induced by mesenchymal stem cells associated with indoleamine 2,3-dioxygenase expression. Transplantation, 90, 1312–1320.

    CAS  PubMed  Google Scholar 

  65. Lotfi, R., Steppe, L., Hang, R., Rojewski, M., Massold, M., Jahrsdörfer, B., & Schrezenmeier, H. (2018). ATP promotes immunosuppressive capacities of mesenchymal stromal cells by enhancing the expression of indoleamine dioxygenase. Immunity, Inflammation and Disease, 6, 448–455.

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Toki, Y., Takenouchi, T., Harada, H., Tanuma, S. I., Kitani, H., Kojima, S., & Tsukimoto, M. (2015). Extracellular ATP induces P2X7 receptor activation in mouse Kupffer cells, leading to release of IL-1β, HMGB1, and PGE2, decreased MHC class I expression and necrotic cell death. Biochemical and Biophysical Research Communications, 458, 771–776.

    CAS  PubMed  Google Scholar 

  67. Ulker, P., Özen, N., Abdullayeva, G., Köksoy, S., Yaraş, N., & Basrali, F. (2018). Extracellular ATP activates eNOS and increases intracellular NO generation in red blood cells. Clinical Hemorheology and Microcirculation, 68, 89–101.

    CAS  PubMed  Google Scholar 

  68. Ren, G., Zhang, L., Zhao, X., Xu, G., Zhang, Y., Roberts, A. I., Zhao, R. C., & Shi, Y. (2008). Mesenchymal stem cell-mediated immunosuppression occurs via concerted action of chemokines and nitric oxide. Cell Stem Cell, 2, 141–150.

    CAS  PubMed  Google Scholar 

  69. Jin, L., Zhang, J., Deng, Z., Liu, J., Han, W., Chen, G., Si, Y., & Ye, P. (2020). Mesenchymal stem cells ameliorate myocardial fibrosis in diabetic cardiomyopathy via the secretion of prostaglandin E2. Stem Cell Research & Therapy, 11, 122.

    CAS  Google Scholar 

  70. Kerkela; E, Laitinen A, Rabina J, et al (2016) Adenosinergic immunosuppression by human Mesenchymal stromal cells requires co-operation with T cells. Stem Cell 34:781–790.

  71. Sivanathan, K. N., Rojas-Canales, D. M., Hope, C. M., Krishnan, R., Carroll, R. P., Gronthos, S., Grey, S. T., & Coates, P. T. (2015). Interleukin-17A-induced human Mesenchymal stem cells are superior modulators of immunological function. Stem Cells, 33, 2850–2863.

    CAS  PubMed  Google Scholar 

  72. Chatterjee, D., Tufa, D. M., Baehre, H., et al. (2014). Natural killer cells acquire CD73 expression upon exposure to mesenchymal stem cells we. Blood, 123, 595–597.

    Google Scholar 

  73. Lee, J. J., Jeong, H. J., Kim, M. K., Wee, W. R., Lee, W. W., Kim, S. U., Sung, C., & Yang, Y. H. (2014). CD39-mediated effect of human bone marrow-derived mesenchymal stem cells on the human Th17 cell function. Purinergic Signal, 10, 357–365.

    CAS  PubMed  Google Scholar 

  74. Monguió-Tortajada, M., Roura, S., Gálvez-Montón, C., et al. (2017). Mesenchymal stem cells induce expression of CD73 in human monocytes in vitro and in a swine model of myocardial infarction in vivo. Frontiers in Immunology, 8, 1–13.

    Google Scholar 

  75. Amarnath S, Foley JE, Farthing DE, et al (2015) Bone marrow derived Mesenchymal stromal cells harness Purinergenic signaling to Tolerize human Th1 cells in vivo. Stem cell 1200–1212.

  76. Shin, E. Y., Wang, L., Zemskova, M., et al. (2018). Adenosine production by biomaterial-supported mesenchymal stromal cells reduces the innate inflammatory response in myocardial ischemia/reperfusion injury. Journal of the American Heart Association, 7(2), e006949.

    PubMed  PubMed Central  Google Scholar 

  77. Tan, K., Zhu, H., Zhang, J., et al. (2019). CD73 expression on mesenchymal stem cells dictates the reparative properties via its anti-inflammatory activity. Stem Cells International, 2019, 8717694.

    PubMed  PubMed Central  Google Scholar 

  78. Rodriguez, R., Rosu-Myles, M., Aráuzo-Bravo, M., Horrillo, A., Pan, Q., Gonzalez-Rey, E., Delgado, M., & Menendez, P. (2014). Human bone marrow stromal cells lose immunosuppressive and anti-inflammatory properties upon oncogenic transformation. Stem Cell Reports, 3, 606–619.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Antonioli L, Blandizzi C, Pacher P, Haskó G (2013) Immunity , inflammation and cancer : a leading role for adenosine. Nat Publ Gr 13:842–857.

  80. Borea, P. A., Gessi, S., Merighi, S., & Varani, K. (2016). Adenosine as a multi-Signalling Guardian angel in human diseases: When, where and how does it exert its protective effects? Trends in Pharmacological Sciences, 37, 419–434.

    CAS  PubMed  Google Scholar 

  81. Dominici, M., Le Blanc, K., Mueller, I., et al. (2006). Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy, 8, 315–317.

    CAS  PubMed  Google Scholar 

  82. Iser IC, Bracco P a., Gonçalves CEI, et al (2014) Mesenchymal stem cells from different murine tissues have differential capacity to metabolize extracellular nucleotides. Journal of Cellular Biochemistry 115:1673–1682.

  83. Naasani, L. I. S., Rodrigues, C., de Campos, R. P., Beckenkamp, L. R., Iser, I. C., Bertoni, A. P. S., & Wink, M. R. (2017). Extracellular nucleotide hydrolysis in dermal and Limbal Mesenchymal stem cells: A source of adenosine production. Journal of Cellular Biochemistry, 118, 2430–2442.

    CAS  PubMed  Google Scholar 

  84. Roszek, K., Bomastek, K., Drożdżal, M., & Komoszyński, M. (2013). Dramatic differences in activity of purines metabolizing ecto-enzymes between mesenchymal stem cells isolated from human umbilical cord blood and umbilical cord tissue. Biochemistry and Cell Biology, 91, 519–525.

    CAS  PubMed  Google Scholar 

  85. Chen, X., Shao, H., Zhi, Y., Xiao, Q., Su, C., Dong, L., Liu, X., Li, X., & Zhang, X. (2016). CD73 pathway contributes to the immunosuppressive ability of Mesenchymal stem cells in intraocular autoimmune responses. Stem Cells and Development, 25, 337–346.

    PubMed  Google Scholar 

  86. Netsch, P., Elvers-Hornung, S., Uhlig, S., Klüter, H., Huck, V., Kirschhöfer, F., Brenner-Weiß, G., Janetzko, K., Solz, H., Wuchter, P., Bugert, P., & Bieback, K. (2018). Human mesenchymal stromal cells inhibit platelet activation and aggregation involving CD73-converted adenosine. Stem Cell Research & Therapy, 9(1), 184.

    CAS  Google Scholar 

  87. Boison, D., & Yegutkin, G. G. (2019). Adenosine metabolism: Emerging concepts for Cancer therapy. Cancer Cell, 36, 582–596.

    CAS  PubMed  Google Scholar 

  88. Rodríguez-Serrano, F., Álvarez, P., Caba, O., et al. (2010). Promotion of human adipose-derived stem cell proliferation mediated by exogenous nucleosides. Cell Biology International, 34, 917–924.

    PubMed  Google Scholar 

  89. Cader MZ, de Almeida Rodrigues RP, West JA, et al (2020) FAMIN is a multifunctional purine enzyme enabling the purine nucleotide cycle. Cell 180:278-295.e23.

  90. Mousawi, F., Peng, H., Li, J., Ponnambalam, S., Roger, S., Zhao, H., Yang, X., & Jiang, L. H. (2020). Chemical activation of the Piezo1 channel drives mesenchymal stem cell migration via inducing ATP release and activation of P2 receptor purinergic signaling. Stem Cells, 38, 410–421.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhou, Q., Yang, C., & Yang, P. (2017). The promotional effect of Mesenchymal stem cell homing on bone tissue regeneration. Current Stem Cell Research & Therapy, 12, 365–376.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Finance Code 001; All students are recipients of fellowships from CAPES. MRW, GL and RPC are recipients of research fellowship from Conselho Nacional de Desenvolvimento Científico e Tecnológico - Brasil (CNPq). This study was supported by Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul - Brasil (FAPERGS/CAPES 06/2018 - Programa de Internacionalização da pós-graduação no RS (19/2551-0000679-9) and FAPERGS/MS/CNPq/SESRS n.03/2017 – PPSUS (17/2551-0001)); and CNPqMS-SCTIE-Decit/CNPqn°12/2018(441575/2018-8). JS received support from the Natural Sciences and Engineering Research Council of Canada (NSERC; RGPIN-2016-05867).

Author information

Authors and Affiliations

Authors

Contributions

LRB performed cell culture experiments, HPLC assays, flow cytometry, immunosuppression assay and wrote the manuscript. GRO assisted the stable transfection cell assays and wrote the manuscript. DMF and VGK performed cell culture experiments, enzymatic activity and cell differentiation assay, flow cytometry and doubling population experiments. RPC performed the stable transfection of cells. ICI performed the ADA enzymatic assay. APSB performed RT-qPCR and HPLC assays. JS contributed to the interpretation of the results and provided the NTPDases antibodies. MRW and GL supervised the experiments, assisted in drafting and critical reading. All the authors discussed the results and contributed to the writing of the manuscript.

Corresponding author

Correspondence to Márcia Rosângela Wink.

Ethics declarations

Disclosure Statement

The authors have no conflict of interest to declare.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 19 kb)

Supplementary Figure 1

– CD73 activity and expression in a new cell transduction with TERT. To confirm that cell immortalization process alters the activity and expression of CD73 enzyme, a new stable transfection with the TERT gene was performed. (A) The TERT gene insertion was confirmed by RT-qPCR, as demonstrated by melt curve peak chart collected using the StepOnePlusTM (Applied Biosystems). (B) Flow cytometry data analysis also confirmed a decrease of CD73 MFI in MSCs-TERT (n = 3). (C) Specific enzymatic activity from MSCs and MSCs-TERT measured by release of inorganic phosphate after incubation with AMP (n = 3). Data are expressed as nmol Pi/min/mL, using mean ± SD. T-test was used to determine the statistical difference. (PNG 285 kb)

High Resolution Image (TIF 33311 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beckenkamp, L.R., da Fontoura, D.M.S., Korb, V.G. et al. Immortalization of Mesenchymal Stromal Cells by TERT Affects Adenosine Metabolism and Impairs their Immunosuppressive Capacity. Stem Cell Rev and Rep 16, 776–791 (2020). https://doi.org/10.1007/s12015-020-09986-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-020-09986-5

Keywords

Navigation