Skip to main content
Log in

Wnt/β-catenin Signaling in Embryonic Stem Cell Self-renewal and Somatic Cell Reprogramming

  • Published:
Stem Cell Reviews and Reports Aims and scope Submit manuscript

Abstract

Embryonic stem cells and induced pluripotent stem (iPS) cells are characterized by their ability to self-renew and to generate differentiated cells of all three germ layers. This potential makes them an attractive source to address question of developmental and also for use in clinical regenerative medicine. Although the culture conditions to maintain pluripotency and reprogramming technologies have been established, the underlying molecular mechanisms are incompletely understood. Accumulating evidence indicates that the Wnt/β-catenin signaling pathway plays a pivotal role in the maintenance of pluripotency as well as in the process of somatic cell reprogramming. Reciprocally, Wnt/β-catenin signaling also plays a critical role in the lineage decision/commitment process. These dramatically different outcomes upon activation of the Wnt signaling cascade has fueled enormous controversy concerning the role of Wnt signaling in the maintenance of potency and induction of differentiation in stem cells. Here, we discuss and explore the divergent roles of the Wnt signaling pathways based on findings from our lab. Accumulated results from our lab indicate the usage of a critical switching mechanism that regulates the divergent Wnt/catenin transcriptional programs associated with either maintenance of potency or initiation of differentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APC:

Adenomatous polyposis coli

BMP4:

Bone morphogenetic protein 4

BRG1:

Brahma-related gene 1

CK1:

Casein kinase 1

Dvl:

Dishevelled

ES:

Embryonic stem

FGF4:

Fibroblast growth factor 4

Fz:

Frizzled

GSK3:

Glycogen synthase kinase 3

ICM:

Inner cell mass

iPS:

Induced pluripotent stem

Klf4:

Kruppel-like factor 4

LIF:

Leukemia inhibitory factor

LRP:

Low-density lipoprotein receptor-related protein

MEF:

Mouse embryonic fibroblast

Oct4:

Octamer binding transcription factor-4

PCP:

Planar-cell-polarity

Sox 2:

Sex determining region Y-box 2

Stat3:

Signal transducer and activator of transcription 3

TERT:

Telomerase reverse transcriptase

TGFβ:

Transforming growth factor-beta

References

  1. Evans, M. J., & Kaufman, M. H. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292, 154–156.

    Article  PubMed  CAS  Google Scholar 

  2. Sekkai, D., Gruel, G., Herry, M., et al. (2005). Microarray analysis of LIF/Stat3 transcriptional targets in embryonic stem cells. Stem cells (Dayton, Ohio), 23, 1634–1642.

    Article  CAS  Google Scholar 

  3. Cartwright, P., McLean, C., Sheppard, A., Rivett, D., Jones, K., & Dalton, S. (2005). LIF/STAT3 controls ES cell self-renewal and pluripotency by a Myc-dependent mechanism. Development, 132, 885–896.

    Article  PubMed  CAS  Google Scholar 

  4. Ying, Q. L., Wray, J., Nichols, J., et al. (2008). The ground state of embryonic stem cell self-renewal. Nature, 453, 519–523.

    Article  PubMed  CAS  Google Scholar 

  5. Qi, X., Li, T. G., Hao, J., et al. (2004). BMP4 supports self-renewal of embryonic stem cells by inhibiting mitogen-activated protein kinase pathways. Proceedings of the National Academy of Sciences of the United States of America, 101, 6027–6032.

    Article  PubMed  CAS  Google Scholar 

  6. Ying, Q. L., Nichols, J., Chambers, I., & Smith, A. (2003). BMP induction of Id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115, 281–292.

    Article  PubMed  CAS  Google Scholar 

  7. Xu, R. H., Peck, R. M., Li, D. S., Feng, X., Ludwig, T., & Thomson, J. A. (2005). Basic FGF and suppression of BMP signaling sustain undifferentiated proliferation of human ES cells. Nat Methods, 2, 185–190.

    Article  PubMed  CAS  Google Scholar 

  8. Schuldiner, M., Yanuka, O., Itskovitz-Eldor, J., Melton, D. A., & Benvenisty, N. (2000). Effects of eight growth factors on the differentiation of cells derived from human embryonic stem cells. Proceedings of the National Academy of Sciences of the United States of America, 97, 11307–11312.

    Article  PubMed  CAS  Google Scholar 

  9. Watabe, T., & Miyazono, K. (2009). Roles of TGF-beta family signaling in stem cell renewal and differentiation. Cell Research, 19, 103–115.

    Article  PubMed  CAS  Google Scholar 

  10. Kunath, T., Saba-El-Leil, M. K., Almousailleakh, M., Wray, J., Meloche, S., & Smith, A. (2007). FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development, 134, 2895–2902.

    Article  PubMed  CAS  Google Scholar 

  11. Tesar, P. J., Chenoweth, J. G., Brook, F. A., et al. (2007). New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature, 448, 196–199.

    Article  PubMed  CAS  Google Scholar 

  12. Chou, Y. F., Chen, H. H., Eijpe, M., et al. (2008). The growth factor environment defines distinct pluripotent ground states in novel blastocyst-derived stem cells. Cell, 135, 449–461.

    Article  PubMed  CAS  Google Scholar 

  13. Brons, I. G., Smithers, L. E., Trotter, M. W., et al. (2007). Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature, 448, 191–195.

    Article  PubMed  CAS  Google Scholar 

  14. Okita, K., & Yamanaka, S. (2006). Intracellular signaling pathways regulating pluripotency of embryonic stem cells. Current Stem Cell Research & Therapy, 1, 103–111.

    Article  CAS  Google Scholar 

  15. Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell, 126, 663–676.

    Article  PubMed  CAS  Google Scholar 

  16. Merrill, B. J. (2008). Develop-WNTs in somatic cell reprogramming. Cell Stem Cell, 3, 465–466.

    Article  PubMed  CAS  Google Scholar 

  17. Baker, N. E. (1987). Molecular cloning of sequences from wingless, a segment polarity gene in Drosophila: the spatial distribution of a transcript in embryos. The EMBO Journal, 6, 1765–1773.

    PubMed  CAS  Google Scholar 

  18. Rijsewijk, F., Schuermann, M., Wagenaar, E., Parren, P., Weigel, D., & Nusse, R. (1987). The Drosophila homolog of the mouse mammary oncogene int-1 is identical to the segment polarity gene wingless. Cell, 50, 649–657.

    Article  PubMed  CAS  Google Scholar 

  19. Miller JR. The Wnts. Genome Biol 2002;3:REVIEWS3001.

    Google Scholar 

  20. Hagen, T., & Vidal-Puig, A. (2002). Characterisation of the phosphorylation of beta-catenin at the GSK-3 priming site Ser45. Biochemical and Biophysical Research Communications, 294, 324–328.

    Article  PubMed  CAS  Google Scholar 

  21. Mao, J., Wang, J., Liu, B., et al. (2001). Low-density lipoprotein receptor-related protein-5 binds to Axin and regulates the canonical Wnt signaling pathway. Molecular Cell, 7, 801–809.

    Article  PubMed  CAS  Google Scholar 

  22. Liu, X., Rubin, J. S., & Kimmel, A. R. (2005). Rapid, Wnt-induced changes in GSK3beta associations that regulate beta-catenin stabilization are mediated by Galpha proteins. Current Biology, 15, 1989–1997.

    Article  PubMed  CAS  Google Scholar 

  23. Yokoya, F., Imamoto, N., Tachibana, T., & Yoneda, Y. (1999). beta-catenin can be transported into the nucleus in a Ran-unassisted manner. Molecular Biology of the Cell, 10, 1119–1131.

    PubMed  CAS  Google Scholar 

  24. Gan, X. Q., Wang, J. Y., Xi, Y., Wu, Z. L., Li, Y. P., & Li, L. (2008). Nuclear Dvl, c-Jun, beta-catenin, and TCF form a complex leading to stabilization of beta-catenin-TCF interaction. The Journal of Cell Biology, 180, 1087–1100.

    Article  PubMed  CAS  Google Scholar 

  25. Zeng, X., Tamai, K., Doble, B., et al. (2005). A dual-kinase mechanism for Wnt co-receptor phosphorylation and activation. Nature, 438, 873–877.

    Article  PubMed  CAS  Google Scholar 

  26. Tada, M., Concha, M. L., & Heisenberg, C. P. (2002). Non-canonical Wnt signalling and regulation of gastrulation movements. Seminars in Cell & Developmental Biology, 13, 251–260.

    Article  CAS  Google Scholar 

  27. Kuhl, M., Sheldahl, L. C., Park, M., Miller, J. R., & Moon, R. T. (2000). The Wnt/Ca2+ pathway: A new vertebrate Wnt signaling pathway takes shape. Trends in Genetics, 16, 279–283.

    Article  PubMed  CAS  Google Scholar 

  28. He, X., Saint-Jeannet, J. P., Wang, Y., Nathans, J., Dawid, I., & Varmus, H. (1997). A member of the Frizzled protein family mediating axis induction by Wnt-5A. Science, 275, 1652–1654.

    Article  PubMed  CAS  Google Scholar 

  29. Ishitani, T., Kishida, S., Hyodo-Miura, J., et al. (2003). The TAK1-NLK mitogen-activated protein kinase cascade functions in the Wnt-5a/Ca(2+) pathway to antagonize Wnt/beta-catenin signaling. Molecular and Cellular Biology, 23, 131–139.

    Article  PubMed  CAS  Google Scholar 

  30. Sonderegger, S., Pollheimer, J., & Knofler, M. (2010). Wnt signalling in implantation, decidualisation and placental differentiation–review. Placenta, 31, 839–847.

    Article  PubMed  CAS  Google Scholar 

  31. De Vries, W. N., Evsikov, A. V., Haac, B. E., et al. (2004). Maternal beta-catenin and E-cadherin in mouse development. Development, 131, 4435–4445.

    Article  PubMed  Google Scholar 

  32. Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., & Kemler, R. (1995). Lack of beta-catenin affects mouse development at gastrulation. Development, 121, 3529–3537.

    PubMed  CAS  Google Scholar 

  33. Xie, H., Tranguch, S., Jia, X., et al. (2008). Inactivation of nuclear Wnt-beta-catenin signaling limits blastocyst competency for implantation. Development, 135, 717–727.

    Article  PubMed  CAS  Google Scholar 

  34. Chen, Q., Zhang, Y., Lu, J., et al. (2009). Embryo-uterine cross-talk during implantation: The role of Wnt signaling. Molecular Human Reproduction, 15, 215–221.

    Article  PubMed  CAS  Google Scholar 

  35. Slusarski, D. C., Corces, V. G., & Moon, R. T. (1997). Interaction of Wnt and a Frizzled homologue triggers G-protein-linked phosphatidylinositol signalling. Nature, 390, 410–413.

    Article  PubMed  CAS  Google Scholar 

  36. Kuhl, M., Sheldahl, L. C., Malbon, C. C., & Moon, R. T. (2000). Ca(2+)/calmodulin-dependent protein kinase II is stimulated by Wnt and Frizzled homologs and promotes ventral cell fates in Xenopus. The Journal of Biological Chemistry, 275, 12701–12711.

    Article  PubMed  CAS  Google Scholar 

  37. Sheldahl, L. C., Park, M., Malbon, C. C., & Moon, R. T. (1999). Protein kinase C is differentially stimulated by Wnt and Frizzled homologs in a G-protein-dependent manner. Current Biology, 9, 695–698.

    Article  PubMed  CAS  Google Scholar 

  38. Slusarski, D. C., & Pelegri, F. (2007). Calcium signaling in vertebrate embryonic patterning and morphogenesis. Developmental Biology, 307, 1–13.

    Article  PubMed  CAS  Google Scholar 

  39. Mohamed, O. A., Jonnaert, M., Labelle-Dumais, C., Kuroda, K., Clarke, H. J., & Dufort, D. (2005). Uterine Wnt/beta-catenin signaling is required for implantation. Proceedings of the National Academy of Sciences of the United States of America, 102, 8579–8584.

    Article  PubMed  CAS  Google Scholar 

  40. Ishikawa, T., Tamai, Y., Zorn, A. M., et al. (2001). Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development, 128, 25–33.

    PubMed  CAS  Google Scholar 

  41. Galceran, J., Farinas, I., Depew, M. J., Clevers, H., & Grosschedl, R. (1999). Wnt3a-/- like phenotype and limb deficiency in Lef1(-/-)Tcf1(-/-) mice. Genes & Development, 13, 709–717.

    Article  CAS  Google Scholar 

  42. Liu, P., Wakamiya, M., Shea, M. J., Albrecht, U., Behringer, R. R., & Bradley, A. (1999). Requirement for Wnt3 in vertebrate axis formation. Nature Genetics, 22, 361–365.

    Article  PubMed  CAS  Google Scholar 

  43. Takada, S., Stark, K. L., Shea, M. J., Vassileva, G., McMahon, J. A., & McMahon, A. P. (1994). Wnt-3a regulates somite and tailbud formation in the mouse embryo. Genes & Development, 8, 174–189.

    Article  CAS  Google Scholar 

  44. Wurst, W., & Bally-Cuif, L. (2001). Neural plate patterning: upstream and downstream of the isthmic organizer. Nature Reviews. Neuroscience, 2, 99–108.

    Article  PubMed  CAS  Google Scholar 

  45. Rowitch, D. H., & McMahon, A. P. (1995). Pax-2 expression in the murine neural plate precedes and encompasses the expression domains of Wnt-1 and En-1. Mechanisms of Development, 52, 3–8.

    Article  PubMed  CAS  Google Scholar 

  46. Reya, T., & Clevers, H. (2005). Wnt signalling in stem cells and cancer. Nature, 434, 843–850.

    Article  PubMed  CAS  Google Scholar 

  47. Clevers, H. (2006). Wnt/beta-catenin signaling in development and disease. Cell, 127, 469–480.

    Article  PubMed  CAS  Google Scholar 

  48. Mimeault, M., & Batra, S. K. (2006). Concise review: Recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem cells (Dayton, Ohio), 24, 2319–2345.

    Article  CAS  Google Scholar 

  49. Reya, T., Duncan, A. W., Ailles, L., et al. (2003). A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature, 423, 409–414.

    Article  PubMed  CAS  Google Scholar 

  50. Kalani, M. Y., Cheshier, S. H., Cord, B. J., et al. (2008). Wnt-mediated self-renewal of neural stem/progenitor cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 16970–16975.

    Article  PubMed  CAS  Google Scholar 

  51. Zeng, Y. A., & Nusse, R. (2010). Wnt proteins are self-renewal factors for mammary stem cells and promote their long-term expansion in culture. Cell Stem Cell, 6, 568–577.

    Article  PubMed  CAS  Google Scholar 

  52. He, S., Pant, D., Schiffmacher, A., Meece, A., & Keefer, C. L. (2008). Lymphoid enhancer factor 1-mediated Wnt signaling promotes the initiation of trophoblast lineage differentiation in mouse embryonic stem cells. Stem cells (Dayton, Ohio), 26, 842–849.

    Article  CAS  Google Scholar 

  53. Sato, N., Meijer, L., Skaltsounis, L., Greengard, P., & Brivanlou, A. H. (2004). Maintenance of pluripotency in human and mouse embryonic stem cells through activation of Wnt signaling by a pharmacological GSK-3-specific inhibitor. Natural Medicines, 10, 55–63.

    Article  CAS  Google Scholar 

  54. Anton, R., Kestler, H. A., & Kuhl, M. (2007). Beta-catenin signaling contributes to stemness and regulates early differentiation in murine embryonic stem cells. FEBS Letters, 581, 5247–5254.

    Article  PubMed  CAS  Google Scholar 

  55. Aubert, J., Dunstan, H., Chambers, I., & Smith, A. (2002). Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nature Biotechnology, 20, 1240–1245.

    Article  PubMed  CAS  Google Scholar 

  56. Singla, D. K., Schneider, D. J., LeWinter, M. M., & Sobel, B. E. (2006). wnt3a but not wnt11 supports self-renewal of embryonic stem cells. Biochemical and Biophysical Research Communications, 345, 789–795.

    Article  PubMed  CAS  Google Scholar 

  57. Hao, J., Li, T. G., Qi, X., Zhao, D. F., & Zhao, G. Q. (2006). WNT/beta-catenin pathway up-regulates Stat3 and converges on LIF to prevent differentiation of mouse embryonic stem cells. Developmental Biology, 290, 81–91.

    Article  PubMed  CAS  Google Scholar 

  58. Kiyonari, H., Kaneko, M., Abe, S., & Aizawa, S. (2010). Three inhibitors of FGF receptor, ERK, and GSK3 establishes germline-competent embryonic stem cells of C57BL/6 N mouse strain with high efficiency and stability. Genesis, 48, 317–327.

    PubMed  CAS  Google Scholar 

  59. Sato, H., Amagai, K., Shimizukawa, R., & Tamai, Y. (2009). Stable generation of serum- and feeder-free embryonic stem cell-derived mice with full germline-competency by using a GSK3 specific inhibitor. Genesis, 47, 414–422.

    Article  PubMed  CAS  Google Scholar 

  60. Kielman, M. F., Rindapaa, M., Gaspar, C., et al. (2002). Apc modulates embryonic stem-cell differentiation by controlling the dosage of beta-catenin signaling. Nature Genetics, 32, 594–605.

    Article  PubMed  CAS  Google Scholar 

  61. Dravid, G., Ye, Z., Hammond, H., et al. (2005). Defining the role of Wnt/beta-catenin signaling in the survival, proliferation, and self-renewal of human embryonic stem cells. Stem cells (Dayton, Ohio), 23, 1489–1501.

    Article  CAS  Google Scholar 

  62. Ogawa, K., Nishinakamura, R., Iwamatsu, Y., Shimosato, D., & Niwa, H. (2006). Synergistic action of Wnt and LIF in maintaining pluripotency of mouse ES cells. Biochemical and Biophysical Research Communications, 343, 159–166.

    Article  PubMed  CAS  Google Scholar 

  63. Takao, Y., Yokota, T., & Koide, H. (2007). Beta-catenin up-regulates Nanog expression through interaction with Oct-3/4 in embryonic stem cells. Biochemical and Biophysical Research Communications, 353, 699–705.

    Article  PubMed  CAS  Google Scholar 

  64. Pereira, L., Yi, F., & Merrill, B. J. (2006). Repression of Nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. Molecular and Cellular Biology, 26, 7479–7491.

    Article  PubMed  CAS  Google Scholar 

  65. Le, N. H., Franken, P., & Fodde, R. (2008). Tumour-stroma interactions in colorectal cancer: converging on beta-catenin activation and cancer stemness. British Journal of Cancer, 98, 1886–1893.

    Article  PubMed  CAS  Google Scholar 

  66. Kim, Y. M., Ma, H., Oehler, V. G., et al. (2011). The gamma catenin/CBP complex maintains survivin transcription in beta-catenin deficient/depleted cancer cells. Current Cancer Drug Targets, 11, 213–225.

    Article  PubMed  CAS  Google Scholar 

  67. Cole, M. F., Johnstone, S. E., Newman, J. J., Kagey, M. H., & Young, R. A. (2008). Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes & Development, 22, 746–755.

    Article  CAS  Google Scholar 

  68. Kelly, K. F., Ng, D. Y., Jayakumaran, G., Wood, G. A., Koide, H., & Doble, B. W. (2011). beta-Catenin Enhances Oct-4 Activity and Reinforces Pluripotency through a TCF-Independent Mechanism. Cell Stem Cell, 8, 214–227.

    Article  PubMed  CAS  Google Scholar 

  69. Hecht, A., Vleminckx, K., Stemmler, M. P., van Roy, F., & Kemler, R. (2000). The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. The EMBO Journal, 19, 1839–1850.

    Article  PubMed  CAS  Google Scholar 

  70. Takemaru, K. I., & Moon, R. T. (2000). The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. The Journal of Cell Biology, 149, 249–254.

    Article  PubMed  CAS  Google Scholar 

  71. Yao, T. P., Oh, S. P., Fuchs, M., et al. (1998). Gene dosage-dependent embryonic development and proliferation defects in mice lacking the transcriptional integrator p300. Cell, 93, 361–372.

    Article  PubMed  CAS  Google Scholar 

  72. Kawasaki, H., Taira, K., Yokoyama, K. K. (1999). Functional analysis of the transcriptional coactivators p300 and CBP using ribozyme. Nucleic Acids Symp Ser 263–264.

  73. Roth, J. F., Shikama, N., Henzen, C., et al. (2003). Differential role of p300 and CBP acetyltransferase during myogenesis: p300 acts upstream of MyoD and Myf5. The EMBO Journal, 22, 5186–5196.

    Article  PubMed  CAS  Google Scholar 

  74. Miyabayashi, T., Teo, J. L., Yamamoto, M., McMillan, M., Nguyen, C., & Kahn, M. (2007). Wnt/beta-catenin/CBP signaling maintains long-term murine embryonic stem cell pluripotency. Proceedings of the National Academy of Sciences of the United States of America, 104, 5668–5673.

    Article  PubMed  CAS  Google Scholar 

  75. Wagner, R. T., Xu, X., Yi, F., Merrill, B. J., & Cooney, A. J. (2010). Canonical Wnt/beta-catenin regulation of liver receptor homolog-1 mediates pluripotency gene expression. Stem cells (Dayton, Ohio), 28, 1794–1804.

    Article  CAS  Google Scholar 

  76. Chew, J. L., Loh, Y. H., Zhang, W., et al. (2005). Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Molecular and Cellular Biology, 25, 6031–6046.

    Article  PubMed  CAS  Google Scholar 

  77. Cai, L., Ye, Z., Zhou, B. Y., Mali, P., Zhou, C., & Cheng, L. (2007). Promoting human embryonic stem cell renewal or differentiation by modulating Wnt signal and culture conditions. Cell Research, 17, 62–72.

    Article  PubMed  CAS  Google Scholar 

  78. Ding, V. M., Ling, L., Natarajan, S., Yap, M. G., Cool, S. M., & Choo, A. B. (2010). FGF-2 modulates Wnt signaling in undifferentiated hESC and iPS cells through activated PI3-K/GSK3beta signaling. Journal of Cellular Physiology, 225, 417–428.

    Article  PubMed  CAS  Google Scholar 

  79. Paling, N. R., Wheadon, H., Bone, H. K., & Welham, M. J. (2004). Regulation of embryonic stem cell self-renewal by phosphoinositide 3-kinase-dependent signaling. The Journal of Biological Chemistry, 279, 48063–48070.

    Article  PubMed  CAS  Google Scholar 

  80. Marson, A., Foreman, R., Chevalier, B., et al. (2008). Wnt signaling promotes reprogramming of somatic cells to pluripotency. Cell Stem Cell, 3, 132–135.

    Article  PubMed  CAS  Google Scholar 

  81. Lluis, F., Pedone, E., Pepe, S., & Cosma, M. P. (2008). Periodic activation of Wnt/beta-catenin signaling enhances somatic cell reprogramming mediated by cell fusion. Cell Stem Cell, 3, 493–507.

    Article  PubMed  CAS  Google Scholar 

  82. Li, W., Zhou, H., Abujarour, R., et al. (2009). Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem cells (Dayton, Ohio), 27, 2992–3000.

    CAS  Google Scholar 

  83. Lluis, F., Pedone, E., Pepe, S., & Cosma, M. P. (2010). The Wnt/beta-catenin signaling pathway tips the balance between apoptosis and reprograming of cell fusion hybrids. Stem cells (Dayton, Ohio), 28, 1940–1949.

    Article  CAS  Google Scholar 

  84. Ma, H., Nguyen, C., Lee, K. S., & Kahn, M. (2005). Differential roles for the coactivators CBP and p300 on TCF/beta-catenin-mediated survivin gene expression. Oncogene, 24, 3619–3631.

    Article  PubMed  CAS  Google Scholar 

  85. Kawamura, T., Suzuki, J., Wang, Y. V., et al. (2009). Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature, 460, 1140–1144.

    Article  PubMed  CAS  Google Scholar 

  86. Barker, N., Hurlstone, A., Musisi, H., Miles, A., Bienz, M., & Clevers, H. (2001). The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. The EMBO Journal, 20, 4935–4943.

    Article  PubMed  CAS  Google Scholar 

  87. Park, J. I., Venteicher, A. S., Hong, J. Y., et al. (2009). Telomerase modulates Wnt signalling by association with target gene chromatin. Nature, 460, 66–72.

    Article  PubMed  CAS  Google Scholar 

  88. Randazzo, F. M., Khavari, P., Crabtree, G., Tamkun, J., & Rossant, J. (1994). brg1: A putative murine homologue of the Drosophila brahma gene, a homeotic gene regulator. Developmental Biology, 161, 229–242.

    Article  PubMed  Google Scholar 

  89. Shi, Y., Do, J. T., Desponts, C., Hahm, H. S., Scholer, H. R., & Ding, S. (2008). A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell, 2, 525–528.

    Article  PubMed  CAS  Google Scholar 

  90. Matsumoto, S., Banine, F., Struve, J., et al. (2006). Brg1 is required for murine neural stem cell maintenance and gliogenesis. Developmental Biology, 289, 372–383.

    Article  PubMed  CAS  Google Scholar 

  91. Bultman, S., Gebuhr, T., Yee, D., et al. (2000). A Brg1 null mutation in the mouse reveals functional differences among mammalian SWI/SNF complexes. Molecular Cell, 6, 1287–1295.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of Interest

The authors have received no payment for the preparation of this manuscript and state no financial and non-financial conflict of interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Kahn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miki, T., Yasuda, Sy. & Kahn, M. Wnt/β-catenin Signaling in Embryonic Stem Cell Self-renewal and Somatic Cell Reprogramming. Stem Cell Rev and Rep 7, 836–846 (2011). https://doi.org/10.1007/s12015-011-9275-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12015-011-9275-1

Keywords

Navigation