Skip to main content

Advertisement

Log in

Bmp 2 and Bmp 7 Induce Odonto- And Osteogenesis of Human Tooth Germ Stem Cells

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bone morphogenetic proteins (BMPs) initiate, promote, and maintain odontogenesis and osteogenesis. In this study, we studied the effect of bone morphogenic protein 2 (BMP 2) and bone morphogenic protein 7 (BMP 7) as differentiation inducers in tooth and bone regeneration. We compared the effect of BMP 2 and BMP 7 on odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs). Third molar-derived hTGSCs were characterized with mesenchymal stem cell surface markers by flow cytometry. BMP 2 and BMP 7 were transfected into hTGSCs and the cells were seeded onto six-well plates. One day after the transfection, hTGSCs were treated with odontogenic and osteogenic mediums for 14 days. For confirmation of odontogenic and osteogenic differentiation, mRNA levels of BMP2, BMP 7, collagen type 1 (COL1A), osteocalsin (OCN), and dentin sialophosphoprotein (DSPP) genes were measured by quantitative real-time PCR. In addition to this, immunocytochemistry was performed by odontogenic and osteogenic antibodies and mineralization obtained by von Kossa staining. Our results showed that the BMP 2 and BMP 7 both promoted odontogenic and osteogenic differentiation of hTGSCs. Data indicated that BMP 2 treatment and BMP 7 treatment induce odontogenic differentiation without affecting each other, whereas they induce osteogenic differentiation by triggering expression of each other. These findings provide a feasible tool for tooth and bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Cihova, M., Altanerova, V., Altaner, C. Stem cell based cancer gene therapy. Mol Pharm 8, 1480–1487.

  2. Thesleff, I., & Sharpe, P. (1997). Signaling networks regulating dental development. Mechanisms of Development, 67, 111–123.

    Article  CAS  Google Scholar 

  3. Graziano, A., d’Aquino, R., Laino, G., & Papaccio, G. (2008). Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Reviews, 4, 21–26.

    Article  Google Scholar 

  4. Ikeda, E., Yagi, K., Kojima, M., Yagyuu, T., Ohshima, A., Sobajima, S., Tadokoro, M., Katsube, Y., Isoda, K., Kondoh, M., Kawase, M., Go, M. J., Adachi, H., Yokota, Y., Kirita, T., & Ohgushi, H. (2008). Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation, 76, 495–505.

    Article  CAS  Google Scholar 

  5. Zhang, W., Walboomers, X. F., van Osch, G. J., van den Dolder, J., & Jansen, J. A. (2008). Hard tissue formation in a porous HA/TCP ceramic scaffold loaded with stromal cells derived from dental pulp and bone marrow. Tissue Engineering. Part A, 14, 285–294.

    Article  Google Scholar 

  6. Yang, X., Walboomers, X. F., van den Dolder, J., Yang, F., Bian, Z., Fan, M., & Jansen, J. A. (2008). Non-viral bone morphogenetic protein 2 transfection of rat dental pulp stem cells using calcium phosphate nanoparticles as carriers. Tissue Engineering. Part A, 14, 71–81.

    Article  CAS  Google Scholar 

  7. Nam, S., Won, J. E., Kim, C. H., & Kim, H. W. (2011). Odontogenic differentiation of human dental pulp stem cells stimulated by the calcium phosphate porous granules. Journal of Tissue Engineering, 2011, 812547.

    Google Scholar 

  8. Gronthos, S., Brahim, J., Li, W., Fisher, L. W., Cherman, N., Boyde, A., DenBesten, P., Robey, P. G., & Shi, S. (2002). Stem cell properties of human dental pulp stem cells. Journal of Dental Research, 81, 531–535.

    Article  CAS  Google Scholar 

  9. Tasli, P. N., Tapsin, S., Demirel, S., Yalvac, M. E., Akyuz, S., Yarat, A., & Sahin, F. (2013). Isolation and characterization of dental pulp stem cells from a patient with Papillon-Lefevre syndrome. Journal of Endodontics, 39, 31–38.

    Article  Google Scholar 

  10. Laino, G., d’Aquino, R., Graziano, A., Lanza, V., Carinci, F., Naro, F., Pirozzi, G., & Papaccio, G. (2005). A new population of human adult dental pulp stem cells: a useful source of living autologous fibrous bone tissue (LAB). Journal of Bone and Mineral Research, 20, 1394–1402.

    Article  CAS  Google Scholar 

  11. Laino, G., Graziano, A., d’Aquino, R., Pirozzi, G., Lanza, V., Valiante, S., De Rosa, A., Naro, F., Vivarelli, E., & Papaccio, G. (2006). An approachable human adult stem cell source for hard-tissue engineering. Journal of Cellular Physiology, 206, 693–701.

    Article  CAS  Google Scholar 

  12. Papaccio, G., Graziano, A., d’Aquino, R., Graziano, M. F., Pirozzi, G., Menditti, D., De Rosa, A., Carinci, F., & Laino, G. (2006). Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. Journal of Cellular Physiology, 208, 319–325.

    Article  CAS  Google Scholar 

  13. Tasli, P. N., Yalvac, M. E., Sofiev, N., & Sahin, F. (2013). Effect of f68, f127, and p85 pluronic block copolymers on odontogenic differentiation of human tooth germ stem cells. Journal of Endodontics, 39, 1265–1271.

    Article  Google Scholar 

  14. Wozney, J. M., Rosen, V., Celeste, A. J., Mitsock, L. M., Whitters, M. J., Kriz, R. W., Hewick, R. M., & Wang, E. A. (1988). Novel regulators of bone formation: molecular clones and activities. Science, 242, 1528–1534.

    Article  CAS  Google Scholar 

  15. Urist, M. R. (1965). Bone: formation by autoinduction. Science, 150, 893–899.

    Article  CAS  Google Scholar 

  16. Gronthos, S., Arthur, A., Bartold, P. M., Shi, S. A method to isolate and culture expand human dental pulp stem cells. Methods Mol Biol 698, 107–121.

  17. Wang, J., Liu, X., Jin, X., Ma, H., Hu, J., Ni, L., Ma, P. X. The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(L-lactic acid) scaffolds in vitro and in vivo. Acta Biomater 6, 3856–3863.

  18. Ogose, A., Motoyama, T., Hotta, T., & Watanabe, H. (1996). Expression of bone morphogenetic proteins in human osteogenic and epithelial tumor cells. Pathology International, 46, 9–14.

    Article  CAS  Google Scholar 

  19. Ferreira, E., Potier, E., Logeart-Avramoglou, D., Salomskaite-Davalgiene, S., Mir, L. M., & Petite, H. (2008). Optimization of a gene electrotransfer method for mesenchymal stem cell transfection. Gene Therapy, 15, 537–544.

    Article  CAS  Google Scholar 

  20. Arnold, A. S., Laporte, V., Dumont, S., Appert-Collin, A., Erbacher, P., Coupin, G., Levy, R., Poindron, P., & Gies, J. P. (2006). Comparing reagents for efficient transfection of human primary myoblasts: FuGENE 6, Effectene, and ExGen 500. Fundamental and Clinical Pharmacology, 20, 81–89.

    Article  CAS  Google Scholar 

  21. Tasli, P. N., Dogan, A., Demirci, S., & Sahin, F. (2013). Boron enhances odontogenic and osteogenic differentiation of human tooth germ stem cells (hTGSCs) in vitro. Biological Trace Element Research, 153, 419–427.

    Article  CAS  Google Scholar 

  22. Lisignoli, G., Cristino, S., Piacentini, A., Toneguzzi, S., Grassi, F., Cavallo, C., Zini, N., Solimando, L., Mario Maraldi, N., & Facchini, A. (2005). Cellular and molecular events during chondrogenesis of human mesenchymal stromal cells grown in a three-dimensional hyaluronan-based scaffold. Biomaterials, 26, 5677–5686.

    Article  CAS  Google Scholar 

  23. Lindroos, B., Maenpaa, K., Ylikomi, T., Oja, H., Suuronen, R., & Miettinen, S. (2008). Characterization of human dental stem cells and buccal mucosa fibroblasts. Biochemical and Biophysical Research Communications, 368, 329–335.

    Article  CAS  Google Scholar 

  24. Yan, M., Wang, L. C., Hymowitz, S. G., Schilbach, S., Lee, J., Goddard, A., de Vos, A. M., Gao, W. Q., & Dixit, V. M. (2000). Two-amino acid molecular switch in an epithelial morphogen that regulates binding to two distinct receptors. Science, 290, 523–527.

    Article  CAS  Google Scholar 

  25. Peterson, B., Zhang, J., Iglesias, R., Kabo, M., Hedrick, M., Benhaim, P., & Lieberman, J. R. (2005). Healing of critically sized femoral defects, using genetically modified mesenchymal stem cells from human adipose tissue. Tissue Engineering, 11, 120–129.

    Article  CAS  Google Scholar 

  26. Li, R. H., & Wozney, J. M. (2001). Delivering on the promise of bone morphogenetic proteins. Trends in Biotechnology, 19, 255–265.

    Article  CAS  Google Scholar 

  27. Dragoo, J. L., Choi, J. Y., Lieberman, J. R., Huang, J., Zuk, P. A., Zhang, J., Hedrick, M. H., & Benhaim, P. (2003). Bone induction by BMP-2 transduced stem cells derived from human fat. Journal of Orthopedic Research, 21, 622–629.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Burcin Keskin for her help in flow-cytometry analysis. The authors deny any conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fikrettin Şahin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taşlı, P.N., Aydın, S., Yalvaç, M.E. et al. Bmp 2 and Bmp 7 Induce Odonto- And Osteogenesis of Human Tooth Germ Stem Cells. Appl Biochem Biotechnol 172, 3016–3025 (2014). https://doi.org/10.1007/s12010-013-0706-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-013-0706-0

Keywords

Navigation