Skip to main content

Advertisement

Log in

A Practical Overview on the Molecular Biology of Meningioma

  • Neuro-Oncology (P Y Wen, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Meningioma is a common intracranial neoplasm currently classified in 15 histologic subtypes across 3 grades of malignancy. First-choice therapy for meningioma is maximum safe resection for grade I tumors, and surgery plus optional and mandatory adjuvant radiotherapy for grade II and III, respectively, given the increased rate of recurrence even in the event of complete resection. The WHO 2016 histopathologic grading of meningioma has been questioned due to subjectivity and its controversial predictive power for recurrence.

Recent Findings

Novel DNA methylation profiling has simplified classification into six classes that seem to improve prognostic accuracy.

Summary

We review five main topics of molecular biology research regarding tumorigenesis and natural history of meningioma from the clinician’s perspective: the histopathologic diagnostic features and pitfalls of the current tumor classification; the molecular integrated diagnosis supported by identification of genetic alterations and DNA methylation profiling; the general landscape of the various signaling pathways involved in meningioma formation; the pathogenic theories of the peri-tumoral edema present in meningioma and its therapy implications; and a summarized review on the current treatments and plausible targeted therapies directed to meningioma. It seems likely that molecular assessment will be introduced within the next update of the WHO classification of meningiomas, acknowledging the promising value of DNA methylation profiling. This integrated diagnostic protocol will simplify tumor subtype categorization and provide improved accuracy in predicting recurrence and outcome. Although much effort is being done in identifying key gene mutations, and elucidating specific intracellular signaling pathways involved in meningioma tumorigenesis, effective targeted therapies for recurrent meningiomas are still lacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Marosi C, Hassler M, Roessler K, Reni M, Sant M, Mazza E, et al. Meningioma. Crit Rev Oncol Hematol. 2008;67(2):153–71. https://doi.org/10.1016/j.critrevonc.2008.01.010.

    Article  PubMed  Google Scholar 

  2. Pećina-Šlaus N, Kafka A, Lechpammer M. Molecular genetics of intracranial meningiomas with emphasis on canonical wnt signalling. Cancers (Basel). 2016;8(7):E67. https://doi.org/10.3390/cancers8070067.

    Article  CAS  Google Scholar 

  3. Ostrom QT, Gittleman H, Truitt G, Boscia A, Kruchko C, Barnholtz-Sloan JS. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2011–2015. Neuro Oncol. 2018;20(suppl_4):iv1–iv86. https://doi.org/10.1093/neuonc/noy131.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Whittle IR, Smith C, Navoo P, Collie D. Meningiomas. Lancet. 2004;363(9420):1535–43.

    PubMed  Google Scholar 

  5. Claus EB, Bondy ML, Schildkraut JM, Wiemels JL, Wrensch M, Black PM. Epidemiology of intracranial meningioma. Neurosurgery. 2005;57(6):1088–95 discussion 1088-95.

    PubMed  Google Scholar 

  6. Umansky F, Shoshan Y, Rosenthal G, Fraifeld S, Spektor S. Radiation-induced meningioma. Neurosurg Focus. 2008;24(5):E7. https://doi.org/10.3171/FOC/2008/24/5/E7.

    Article  PubMed  Google Scholar 

  7. Bowers DC, Moskowitz CS, Chou JF, Mazewski CM, Neglia JP, Armstrong GT, et al. Morbidity and mortality associated with meningioma after cranial radiotherapy: a report from the childhood cancer survivor study. J Clin Oncol. 2017;35(14):1570–6. https://doi.org/10.1200/JCO.2016.70.1896.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kok JL, Teepen JC, van Leeuwen FE, Tissing WJE, Neggers SJCMM, van der Pal HJ, et al. Risk of benign meningioma after childhood cancer in the DCOG-LATER cohort: contributions of radiation dose, exposed cranial volume, and age. Neuro-Oncology. 2019;21(3):392–403. https://doi.org/10.1093/neuonc/noy124.

    Article  PubMed  Google Scholar 

  9. Goutagny S, Kalamarides M. Meningiomas and neurofibromatosis. J Neuro-Oncol. 2010;99(3):341–7. https://doi.org/10.1007/s11060-010-0339-x.

    Article  Google Scholar 

  10. Perry A, Giannini C, Raghavan R, Scheithauer BW, Banerjee R, Margraf L, et al. Aggressive phenotypic and genotypic features in pediatric and NF2-associated meningiomas: a clinicopathologic study of 53 cases. J Neuropathol Exp Neurol. 2001;60(10):994–1003.

    CAS  PubMed  Google Scholar 

  11. Blankenstein MA, Verheijen FM, Jacobs JM, Donker TH, van Duijnhoven MW, Thijssen JH. Occurrence, regulation, and significance of progesterone receptors in human meningioma. Steroids. 2000;65(10–11):795–800.

    CAS  PubMed  Google Scholar 

  12. Muskens IS, Wu AH, Porcel J, Cheng I, Le Marchand L, Wiemels JL, et al. Body mass index, comorbidities, and hormonal factors in relation to meningioma in an ethnically diverse population: the Multiethnic Cohort. Neuro-Oncology. 2019;21(4):498–507. https://doi.org/10.1093/neuonc/noz005.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Wen PY, Quant E, Drappatz J, Beroukhim R, Norden AD. Medical therapies for meningiomas. J Neuro-Oncol. 2010;99(3):365–78. https://doi.org/10.1007/s11060-010-0349-8.

    Article  CAS  Google Scholar 

  14. Ji Y, Rankin C, Grunberg S, Sherrod AE, Ahmadi J, Townsend JJ, et al. Double-blind phase III randomized trial of the antiprogestin agent mifepristone in the treatment of unresectable meningioma: SWOG S9005. J Clin Oncol. 2015;33(34):4093–8. https://doi.org/10.1200/JCO.2015.61.6490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol. 2016;131(6):803–20. https://doi.org/10.1007/s00401-016-1545-1.

    Article  PubMed  Google Scholar 

  16. Hale AT, Wang L, Strother MK, Chambless LB. Differentiating meningioma grade by imaging features on magnetic resonance imaging. J Clin Neurosci. 2018;48:71–5. https://doi.org/10.1016/j.jocn.2017.11.013.

    Article  PubMed  Google Scholar 

  17. Yang SY, Park CK, Park SH, Kim DG, Chung YS, Jung HW. Atypical and anaplastic meningiomas: prognostic implications of clinicopathological features. J Neurol Neurosurg Psychiatry. 2008;79(5):574–80.

    PubMed  Google Scholar 

  18. Kshettry VR, Ostrom QT, Kruchko C, Al-Mefty O, Barnett GH, Barnholtz-Sloan JS. Descriptive epidemiology of World Health Organization grades II and III intracranial meningiomas in the United States. Neuro-Oncology. 2015;17(8):1166–73. https://doi.org/10.1093/neuonc/nov069.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sughrue ME, Sanai N, Shangari G, Parsa AT, Berger MS, McDermott MW. Outcome and survival following primary and repeat surgery for World Health Organization Grade III meningiomas. J Neurosurg. 2010;113(2):202–9. https://doi.org/10.3171/2010.1.JNS091114.

    Article  PubMed  Google Scholar 

  20. Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol. 2007;114(2):97–109.

    PubMed  PubMed Central  Google Scholar 

  21. Bagshaw HP, Burt LM, Jensen RL, Suneja G, Palmer CA, Couldwell WT, et al. Adjuvant radiotherapy for atypical meningiomas. J Neurosurg. 2017;126(6):1822–8. https://doi.org/10.3171/2016.5.JNS152809.

    Article  PubMed  Google Scholar 

  22. •• Zhi M, Girvigian MR, Miller MJ, Chen JC, Schumacher AJ, Rahimian J, et al. Long-term outcomes of newly diagnosed resected atypical meningiomas and the role of adjuvant radiotherapy. World Neurosurg. 2019;122:e1153–61. https://doi.org/10.1016/j.wneu.2018.11.006. This paper reviews the prognosis of atypical meningioma and highlights the fact that atypical meningiomas are increasingly being diagnosed under modern criteria.

    Article  PubMed  Google Scholar 

  23. Rogers CL, Perry A, Pugh S, Vogelbaum MA, Brachman D, McMillan W, et al. Pathology concordance levels for meningioma classification and grading in NRG Oncology RTOG Trial 0539. Neuro-Oncology. 2016;18(4):565–74. https://doi.org/10.1093/neuonc/nov247.

    Article  PubMed  Google Scholar 

  24. Marciscano AE, Stemmer-Rachamimov AO, Niemierko A, Larvie M, Curry WT, Barker FG 2nd, et al. Benign meningiomas (WHO Grade I) with atypical histological features: correlation of histopathological features with clinical outcomes. J Neurosurg. 2016;124(1):106–14. https://doi.org/10.3171/2015.1.JNS142228.

    Article  PubMed  Google Scholar 

  25. •• Sahm F, Schrimpf D, Stichel D, DTW J, Hielscher T, Schefzyk S, et al. DNA methylation-based classification and grading system for meningioma: a multicentre, retrospective analysis. Lancet Oncol. 2017;18(5):682–94. https://doi.org/10.1016/S1470-2045(17)30155-9. This seminal paper provides thorough information on the novel classification of meningiomas under epigenetic features, that is, methylation classes.

    Article  CAS  PubMed  Google Scholar 

  26. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. N Engl J Med. 2009;360(8):765–73. https://doi.org/10.1056/NEJMoa0808710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cancer Genome Atlas Research Network, Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade Gliomas. N Engl J Med. 2015;372(26):2481–98. https://doi.org/10.1056/NEJMoa1402121.

    Article  CAS  Google Scholar 

  28. Pajtler KW, Witt H, Sill M, Jones DT, Hovestadt V, Kratochwil F, et al. Molecular classification of ependymal tumors across all CNS compartments, histopathological grades, and age groups. Cancer Cell. 2015;27(5):728–43. https://doi.org/10.1016/j.ccell.2015.04.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hovestadt V, Remke M, Kool M, Pietsch T, Northcott PA, Fischer R, et al. Robust molecular subgrouping and copy-number profiling of medulloblastoma from small amounts of archival tumour material using high-density DNA methylation arrays. Acta Neuropathol. 2013;125(6):913–6. https://doi.org/10.1007/s00401-013-1126-5.

    Article  PubMed  PubMed Central  Google Scholar 

  30. •• BJA P, Oba-Shinjo SM, de Almeida AN, Marie SKN. Molecular alterations in meningiomas: Literature review. Clin Neurol Neurosurg. 2019;176:89–96. https://doi.org/10.1016/j.clineuro.2018.12.004. This paper provides a modern and thorough overview on the molecular alteration present in all types of meningioma.

    Article  Google Scholar 

  31. Domingues P, González-Tablas M, Otero Á, Pascual D, Ruiz L, Miranda D, et al. Genetic/molecular alterations of meningiomas and the signaling pathways targeted. Oncotarget. 2015;6(13):10671–88.

    PubMed  PubMed Central  Google Scholar 

  32. Vaubel RA, Chen SG, Raleigh DR, Link MJ, Chicoine MR, Barani I, et al. Meningiomas with rhabdoid features lacking other histologic features of malignancy: a study of 44 cases and review of the literature. J Neuropathol Exp Neurol. 2016;75(1):44–52. https://doi.org/10.1093/jnen/nlv006.

    Article  PubMed  Google Scholar 

  33. Baumgarten P, Gessler F, Schittenhelm J, Skardelly M, Tews DS, Senft C, et al. Brain invasion in otherwise benign meningiomas does not predict tumor recurrence. Acta Neuropathol. 2016;132(3):479–81. https://doi.org/10.1007/s00401-016-1598-1.

    Article  PubMed  Google Scholar 

  34. Goldbrunner R, Minniti G, Preusser M, Jenkinson MD, Sallabanda K, Houdart E, et al. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 2016;17(9):e383–91. https://doi.org/10.1016/S1470-2045(16)30321-7.

    Article  PubMed  Google Scholar 

  35. Hsu CC, Pai CY, Kao HW, Hsueh CJ, Hsu WL, Lo CP. Do aggressive imaging features correlate with advanced histopathological grade in meningiomas? J Clin Neurosci. 2010;17(5):584–7. https://doi.org/10.1016/j.jocn.2009.09.018.

    Article  PubMed  Google Scholar 

  36. Nagar VA, Ye JR, Ng WH, Chan YH, Hui F, Lee CK, et al. Diffusion-weighted MR imaging: diagnosing atypical or malignant meningiomas and detecting tumor dedifferentiation. AJNR Am J Neuroradiol. 2008;29(6):1147–52. https://doi.org/10.3174/ajnr.A0996.

    Article  CAS  PubMed  Google Scholar 

  37. Hwang WL, Marciscano AE, Niemierko A, Kim DW, Stemmer-Rachamimov AO, Curry WT, et al. Imaging and extent of surgical resection predict risk of meningioma recurrence better than WHO histopathological grade. Neuro-Oncology. 2016;18(6):863–72. https://doi.org/10.1093/neuonc/nov285.

    Article  PubMed  Google Scholar 

  38. Coroller TP, Bi WL, Huynh E, Abedalthagafi M, Aizer AA, Greenwald NF, et al. Radiographic prediction of meningioma grade by semantic and radiomic features. PLoS One. 2017;12(11):e0187908. https://doi.org/10.1371/journal.pone.0187908 eCollection 2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ruttledge MH, Sarrazin J, Rangaratnam S, Phelan CM, Twist E, Merel P, et al. Evidence for the complete inactivation of the NF2 gene in the majority of sporadic meningiomas. Nat Genet. 1994;6(2):180–4.

    CAS  PubMed  Google Scholar 

  40. Clark VE, Erson-Omay EZ, Serin A, Yin J, Cotney J, Ozduman K, et al. Genomic analysis of non-NF2 meningiomas reveals mutations in TRAF7, KLF4, AKT1, and SMO. Science. 2013;339(6123):1077–80. https://doi.org/10.1126/science.1233009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pham MH, Zada G, Mosich GM, Chen TC, Giannotta SL, Wang K, et al. Molecular genetics of meningiomas: a systematic review of the current literature and potential basis for future treatment paradigms. Neurosurg Focus. 2011;30(5):E7. https://doi.org/10.3171/2011.2.FOCUS1117.

    Article  PubMed  Google Scholar 

  42. Evans JJ, Jeun SS, Lee JH, Harwalkar JA, Shoshan Y, Cowell JK, et al. Molecular alterations in the neurofibromatosis type 2 gene and its protein rarely occurring in meningothelial meningiomas. J Neurosurg. 2001;94(1):111–7.

    CAS  PubMed  Google Scholar 

  43. Brastianos PK, Horowitz PM, Santagata S, Jones RT, McKenna A, Getz G, et al. Genomic sequencing of meningiomas identifies oncogenic SMO and AKT1 mutations. Nat Genet. 2013;45(3):285–9. https://doi.org/10.1038/ng.2526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Clark VE, Harmancı AS, Bai H, Youngblood MW, Lee TI, Baranoski JF, et al. Recurrent somatic mutations in POLR2A define a distinct subset of meningiomas. Nat Genet. 2016;48(10):1253–9. https://doi.org/10.1038/ng.3651.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Abedalthagafi M, Bi WL, Aizer AA, Merrill PH, Brewster R, Agarwalla PK, et al. Oncogenic PI3K mutations are as common as AKT1 and SMO mutations in meningioma. Neuro-Oncology. 2016;18(5):649–55. https://doi.org/10.1093/neuonc/nov316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Bi WL, Mei Y, Agarwalla PK, Beroukhim R, Dunn IF. Genomic and epigenomic landscape in meningioma. Neurosurg Clin N Am. 2016;27(2):167–79. https://doi.org/10.1016/j.nec.2015.11.009.

    Article  PubMed  Google Scholar 

  47. Bourboulia D, Stetler-Stevenson WG. Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs): positive and negative regulators in tumor cell adhesion. Semin Cancer Biol. 2010;20(3):161–8. https://doi.org/10.1016/j.semcancer.2010.05.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Huang Q, Zhao SL, Tian XY, Li B, Li Z. Increased co-expression of macrophage migration inhibitory factor and matrix metalloproteinase 9 is associated with tumor recurrence of meningioma. Int J Med Sci. 2013;10(3):276–85. https://doi.org/10.7150/ijms.5185.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Karsy M, Azab MA, Abou-Al-Shaar H, Guan J, Eli I, Jensen RL, et al. Clinical potential of meningioma genomic insights: a practical review for neurosurgeons. Neurosurg Focus. 2018;44(6):E10. https://doi.org/10.3171/2018.2.FOCUS1849.

    Article  PubMed  Google Scholar 

  50. Yuzawa S, Nishihara H, Tanaka S. Genetic landscape of meningioma. Brain Tumor Pathol. 2016;33(4):237–47.

    CAS  PubMed  Google Scholar 

  51. Pavelin S, Bečić K, Forempoher G, Tomić S, Capkun V, Drmić-Hofman I, et al. The significance of immunohistochemical expression of merlin, Ki-67, and p53 in meningiomas. Appl Immunohistochem Mol Morphol. 2014;22(1):46–9. https://doi.org/10.1097/PAI.0b013e318289f490.

    Article  CAS  PubMed  Google Scholar 

  52. Abbritti RV, Polito F, Cucinotta M, Lo Giudice C, Caffo M, Tomasello C, et al. Meningiomas and Proteomics: Focus on New Potential Biomarkers and Molecular Pathways. Cancer Genomics Proteomics. 2016;13(5):369–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Mawrin C, Sasse T, Kirches E, Kropf S, Schneider T, Grimm C, et al. Different activation of mitogen-activated protein kinase and Akt signaling is associated with aggressive phenotype of human meningiomas. Clin Cancer Res. 2005;11(11):4074–82.

    CAS  PubMed  Google Scholar 

  54. James MF, Han S, Polizzano C, Plotkin SR, Manning BD, Stemmer-Rachamimov AO, et al. NF2/merlin is a novel negative regulator of mTOR complex 1, and activation of mTORC1 is associated with meningioma and schwannoma growth. Mol Cell Biol. 2009;29(15):4250–61. https://doi.org/10.1128/MCB.01581-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Boström J, Meyer-Puttlitz B, Wolter M, Blaschke B, Weber RG, Lichter P, et al. Alterations of the tumor suppressor genes CDKN2A (p16(INK4a)), p14(ARF), CDKN2B (p15(INK4b)), and CDKN2C (p18(INK4c)) in atypical and anaplastic meningiomas. Am J Pathol. 2001;159(2):661–9.

    PubMed  PubMed Central  Google Scholar 

  56. Hou J, Kshettry VR, Selman WR, Bambakidis NC. Peritumoral brain edema in intracranial meningiomas: the emergence of vascular endothelial growth factor-directed therapy. Neurosurg Focus. 2013;35(6):E2. https://doi.org/10.3171/2013.8.FOCUS13301.

    Article  PubMed  Google Scholar 

  57. Berhouma M, Jacquesson T, Jouanneau E, Cotton F. Pathogenesis of peri-tumoral edema in intracranial meningiomas. Neurosurg Rev. 2019;42(1):59–71. https://doi.org/10.1007/s10143-017-0897-x.

    Article  PubMed  Google Scholar 

  58. Vignes JR, Sesay M, Rezajooi K, Gimbert E, Liguoro D. Peritumoral edema and prognosis in intracranial meningioma surgery. J Clin Neurosci. 2008;15(7):764–8. https://doi.org/10.1016/j.jocn.2007.06.001.

    Article  CAS  PubMed  Google Scholar 

  59. Probst-Cousin S, Villagran-Lillo R, Lahl R, Bergmann M, Schmid KW, Gullotta F. Secretory meningioma: clinical, histologic, and immunohistochemical findings in 31 cases. Cancer. 1997;79(10):2003–15.

    CAS  PubMed  Google Scholar 

  60. de Vries J, Wakhloo AK. Cerebral oedema associated with WHO-I, WHO-II, and WHO-III-meningiomas: correlation of clinical, computed tomographic, operative and histological findings. Acta Neurochir. 1993;125(1–4):34–40.

    PubMed  Google Scholar 

  61. Simis A, Pires de Aguiar PH, Leite CC, Santana PA Jr, Rosemberg S, Teixeira MJ. Peritumoral brain edema in benign meningiomas: correlation with clinical, radiologic, and surgical factors and possible role on recurrence. Surg Neurol. 2008;70(5):471–7; discussion 477. https://doi.org/10.1016/j.surneu.2008.03.006.

    Article  PubMed  Google Scholar 

  62. Nakasu S, Fukami T, Jito J, Matsuda M. Microscopic anatomy of the brain-meningioma interface. Brain Tumor Pathol. 2005;22(2):53–7.

    PubMed  Google Scholar 

  63. Nakano T, Asano K, Miura H, Itoh S, Suzuki S. Meningiomas with brain edema: radiological characteristics on MRI and review of the literature. Clin Imaging. 2002;26(4):243–9.

    PubMed  Google Scholar 

  64. Klatzo I. Evolution of brain edema concepts. Acta Neurochir Suppl (Wien). 1994;60:3–6.

    CAS  Google Scholar 

  65. Bitzer M, Topka H, Morgalla M, Friese S, Wöckel L, Voigt K. Tumor-related venous obstruction and development of peritumoral brain edema in meningiomas. Neurosurgery. 1998;42(4):730–7.

    CAS  PubMed  Google Scholar 

  66. Tanaka M, Imhof HG, Schucknecht B, Kollias S, Yonekawa Y, Valavanis A. Correlation between the efferent venous drainage of the tumor and peritumoral edema in intracranial meningiomas: superselective angiographic analysis of 25 cases. J Neurosurg. 2006;104(3):382–8.

    PubMed  Google Scholar 

  67. Smith HP, Challa VR, Moody DM, Kelly DL Jr. Biological features of meningiomas that determine the production of cerebral edema. Neurosurgery. 1981;8(4):428–33.

    CAS  PubMed  Google Scholar 

  68. Ding YS, Wang HD, Tang K, Hu ZG, Jin W, Yan W. Expression of vascular endothelial growth factor in human meningiomas and peritumoral brain areas. Ann Clin Lab Sci. 2008;38(4):344–51.

    CAS  PubMed  Google Scholar 

  69. Markovic M, Antunovic V, Milenkovic S, Zivkovic N. Prognostic value of peritumoral edema and angiogenesis in intracranial meningioma surgery. J BUON. 2013;18(2):430–6.

    CAS  PubMed  Google Scholar 

  70. Pistolesi S, Fontanini G, Camacci T, De Ieso K, Boldrini L, Lupi G, et al. Meningioma-associated brain oedema: the role of angiogenic factors and pial blood supply. J Neuro-Oncol. 2002;60(2):159–64.

    CAS  Google Scholar 

  71. Paek SH, Kim DG, Park CK, Phi JH, Kim YY, Im SY, et al. The role of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinase in microcystic meningiomas. Oncol Rep. 2006;16(1):49–56.

    CAS  PubMed  Google Scholar 

  72. Reszec J, Hermanowicz A, Rutkowski R, Turek G, Mariak Z, Chyczewski L. Expression of MMP-9 and VEGF in meningiomas and their correlation with peritumoral brain edema. Biomed Res Int. 2015;2015:646853–8. https://doi.org/10.1155/2015/646853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Wang P, Ni RY, Chen MN, Mou KJ, Mao Q, Liu YH. Expression of aquaporin-4 in human supratentorial meningiomas with peritumoral brain edema and correlation of VEGF with edema formation. Genet Mol Res. 2011;10(3):2165–71. https://doi.org/10.4238/vol10-3gmr1212.

    Article  CAS  PubMed  Google Scholar 

  74. Roth P, Happold C, Weller M. Corticosteroid use in neuro-oncology: an update. Neurooncol Pract. 2015;2(1):6–12.

    PubMed  Google Scholar 

  75. Puchner MJ, Hans VH, Harati A, Lohmann F, Glas M, Herrlinger U. Bevacizumab-induced regression of anaplastic meningioma. Ann Oncol. 2010;21(12):2445–6. https://doi.org/10.1093/annonc/mdq634.

    Article  CAS  PubMed  Google Scholar 

  76. Nayak L, Iwamoto FM, Rudnick JD, Norden AD, Lee EQ, Drappatz J, et al. Atypical and anaplastic meningiomas treated with bevacizumab. J Neuro-Oncol. 2012;109(1):187–93. https://doi.org/10.1007/s11060-012-0886-4.

    Article  CAS  Google Scholar 

  77. Black PM, Villavicencio AT, Rhouddou C, Loeffler JS. Aggressive surgery and focal radiation in the management of meningiomas of the skull base: preservation of function with maintenance of local control. Acta Neurochir. 2001;143(6):555–62.

    CAS  PubMed  Google Scholar 

  78. Buerki RA, Horbinski CM, Kruser T, Horowitz PM, James CD, Lukas RV. An overview of meningiomas. Future Oncol. 2018;14(21):2161–77. https://doi.org/10.2217/fon-2018-0006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Euskirchen P, Peyre M. Management of meningioma. Presse Med. 2018;47(11–12 Pt 2):e245–52. https://doi.org/10.1016/j.lpm.2018.05.016.

    Article  PubMed  Google Scholar 

  80. Rogers L, Barani I, Chamberlain M, Kaley TJ, McDermott M, Raizer J, et al. Meningiomas: knowledge base, treatment outcomes, and uncertainties. A RANO review. J Neurosurg. 2015;122(1):4–23. https://doi.org/10.3171/2014.7.JNS131644.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sun SQ, Hawasli AH, Huang J, Chicoine MR, Kim AH. An evidence-based treatment algorithm for the management of WHO grade II and III meningiomas. Neurosurg Focus. 2015;38(3):E3. https://doi.org/10.3171/2015.1.FOCUS14757.

    Article  PubMed  Google Scholar 

  82. Paldor I, Awad M, Sufaro YZ, Kaye AH, Shoshan Y. Review of controversies in management of non-benign meningioma. J Clin Neurosci. 2016;31:37–46. https://doi.org/10.1016/j.jocn.2016.03.014.

    Article  PubMed  Google Scholar 

  83. Bailo M, Gagliardi F, Boari N, Castellano A, Spina A, Mortini P. The role of surgery in meningiomas. Curr Treat Options Neurol. 2019;21(10):51. https://doi.org/10.1007/s11940-019-0587-9.

    Article  PubMed  Google Scholar 

  84. Nanda A, Bir SC, Konar S, Maiti TK, Bollam P. World Health Organization Grade I convexity meningiomas: study on outcomes, complications and recurrence rates. World Neurosurg. 2016;89:620–627.e2. https://doi.org/10.1016/j.wneu.2015.11.050.

    Article  PubMed  Google Scholar 

  85. Jenkinson MD, Javadpour M, Haylock BJ, Young B, Gillard H, Vinten J, et al. The ROAM/EORTC-1308 trial: Radiation versus Observation following surgical resection of Atypical Meningioma: study protocol for a randomised controlled trial. Trials. 2015;16:519. https://doi.org/10.1186/s13063-015-1040-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Delgado-López PD, Corrales-García EM. Role of adjuvant radiotherapy in atypical (WHO grade II) and anaplastic (WHO grade III) meningiomas: a systematic review. Clin Transl Oncol. 2020. https://doi.org/10.1007/s12094-020-02434-3.

  87. Grunberg SM, Weiss MH, Russell CA, Spitz IM, Ahmadi J, Sadun A, et al. Long-term administration of mifepristone (RU486): clinical tolerance during extended treatment of meningioma. Cancer Investig. 2006;24(8):727–33.

    CAS  Google Scholar 

  88. Scerrati A, Mongardi L, Visani J, Lofrese G, Cavallo MA, Fiorentino A, et al. The controversial role of Bevacizumab in the treatment of patients with intracranial meningioma: a comprehensive literature review. Expert Rev Anticancer Ther. 2020;6:1–7. https://doi.org/10.1080/14737140.2020.1736567.

    Article  CAS  Google Scholar 

  89. Graillon T, Romano D, Defilles C, Saveanu A, Mohamed A, Figarella-Branger D, et al. Octreotide therapy in meningiomas: in vitro study, clinical correlation, and literature review. J Neurosurg. 2017;127(3):660–9. https://doi.org/10.3171/2016.8.JNS16995.

    Article  CAS  PubMed  Google Scholar 

  90. Gupta S, Bi WL, Dunn IF. Medical management of meningioma in the era of precision medicine. Neurosurg Focus. 2018;44(4):E3. https://doi.org/10.3171/2018.1.FOCUS17754.

    Article  PubMed  Google Scholar 

  91. Preusser M, Brastianos PK, Mawrin C. Advances in meningioma genetics: novel therapeutic opportunities. Nat Rev Neurol. 2018;14(2):106–15. https://doi.org/10.1038/nrneurol.2017.168.

    Article  CAS  PubMed  Google Scholar 

  92. Kaley TJ, Wen P, Schiff D, Ligon K, Haidar S, Karimi S, et al. Phase II trial of sunitinib for recurrent and progressive atypical and anaplastic meningioma. Neuro-Oncology. 2015;17(1):116–21. https://doi.org/10.1093/neuonc/nou148.

    Article  CAS  PubMed  Google Scholar 

  93. Choy W, Kim W, Nagasawa D, Stramotas S, Yew A, Gopen Q, et al. The molecular genetics and tumor pathogenesis of meningiomas and the future directions of meningioma treatments. Neurosurg Focus. 2011;30(5):E6. https://doi.org/10.3171/2011.2.FOCUS1116.

    Article  PubMed  Google Scholar 

  94. Mawrin C. Animal models of meningiomas. Chin Clin Oncol. 2017;6(Suppl 1):S6. https://doi.org/10.21037/cco.2017.05.03.

    Article  PubMed  Google Scholar 

  95. Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol. 2017;28(7):1457–72. https://doi.org/10.1093/annonc/mdx106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Pedro D. Delgado-López had the idea for the article, Delgado-López and Martín-Alonso performed the literature search and initial analysis, Delgado-López drafted the article, all authors critically revised the manuscript and all authors approved the final version.

Corresponding author

Correspondence to Pedro David Delgado-López.

Ethics declarations

Conflict of Interest

Pedro David Delgado-López, Esther Cubo-Delgado, Jerónimo Javier González Bernal, and Javier Martín-Alonso each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Delgado-López, P.D., Cubo-Delgado, E., González-Bernal, J.J. et al. A Practical Overview on the Molecular Biology of Meningioma. Curr Neurol Neurosci Rep 20, 62 (2020). https://doi.org/10.1007/s11910-020-01084-w

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-020-01084-w

Keywords

Navigation