Skip to main content
Log in

Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer

  • Research Article
  • Published:
Frontiers of Medicine Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) play critical roles in the development and progression in various cancers. Dysfunctional miR-9 expression remains ambiguous, and no consensus on the metastatic progression of ovarian cancer has been reached. In this study, results from the bioinformatics analysis show that the 3′-UTR of the E-cadherin mRNA was directly regulated by miR-9. Luciferase reporter assay results confirmed that miR-9 could directly target this 3′-UTR. miR-9 and E-cadherin expression in ovarian cancer tissue was quantified by qRT-PCR. Migration and invasion were detected by wound healing and Transwell system assay in SKOV3 and A2780. qRT-PCR and Western blot were performed to detect the epithelial‒mesenchymal transition-associated mRNA and proteins. Immunofluorescence technique was used to analyze the expression and subcellular localization of E-cadherin, N-cadherin, and vimentin. The results showed that miR-9 was frequently upregulated in metastatic serous ovarian cancer tissue compared with paired primary ones. Upregulation of miR-9 could downregulate the expression of E-cadherin but upregulate the expression of mesenchymal markers (N-cadherin and vimentin). Overexpression of miR-9 could promote the cell migration and invasion in ovarian cancer, and these processes could be effectively inhibited via miR-9 inhibitor. Thus, our study demonstrates that miR-9 may promote ovarian cancer metastasis via targeting E-cadherin and a novel potential therapeutic approach to control metastasis of ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Siegel R, Naishadham D, Jemal A. Cancer statistics, 2013. CA Cancer J Clin 2013; 63(1): 11–30

    Article  PubMed  Google Scholar 

  2. Landen CN, Birrer MJ, Sood AK. Early events in the pathogenesis of epithelial ovarian cancer. J Clin Oncol 2008; 26(6): 995–1005

    Article  PubMed  CAS  Google Scholar 

  3. Cho KR, Shih Ie M. Ovarian cancer. Annu Rev Pathol 2009; 4(1): 287–313

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004; 116(2): 281–297

    Article  PubMed  CAS  Google Scholar 

  5. Slack FJ, Weidhaas JB. MicroRNA in cancer prognosis. N Engl J Med 2008; 359(25): 2720–2722

    Article  PubMed  CAS  Google Scholar 

  6. Croce CM, Calin GA. miRNAs, cancer, and stem cell division. Cell 2005; 122(1): 6–7

    Article  PubMed  CAS  Google Scholar 

  7. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science 2004; 303(5654): 83–86

    Article  PubMed  CAS  Google Scholar 

  8. Ma L, Young J, Prabhala H, Pan E, Mestdagh P, Muth D, Teruya- Feldstein J, Reinhardt F, Onder TT, Valastyan S, Westermann F, Speleman F, Vandesompele J, Weinberg RA. miR-9, a MYC/ MYCN-activated microRNA, regulates E-cadherin and cancer metastasis. Nat Cell Biol 2010; 12(3): 247–256

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Song Y, Li J, Zhu Y, Dai Y, Zeng T, Liu L, Li J, Wang H, Qin Y, Zeng M, Guan XY, Li Y. MicroRNA-9 promotes tumor metastasis via repressing E-cadherin in esophageal squamous cell carcinoma. Oncotarget 2014; 5(22): 11669–11680

    PubMed  PubMed Central  Google Scholar 

  10. Sun Z, Han Q, Zhou N,Wang S, Lu S, Bai C, Zhao RC. MicroRNA-9 enhances migration and invasion through KLF17 in hepatocellular carcinoma. Mol Oncol 2013; 7(5): 884–894

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Zhu L, Chen H, Zhou D, Li D, Bai R, Zheng S, Ge W. MicroRNA-9 up-regulation is involved in colorectal cancer metastasis via promoting cell motility. Med Oncol 2012; 29(2): 1037–1043

    Article  PubMed  CAS  Google Scholar 

  12. Shiiyama R, Fukushima S, Jinnin M, Yamashita J, Miyashita A, Nakahara S, Kogi A, Aoi J, Masuguchi S, Inoue Y, Ihn H. Sensitive detection of melanoma metastasis using circulating microRNA expression profiles. Melanoma Res 2013; 23(5): 366–372

    Article  PubMed  CAS  Google Scholar 

  13. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Menard S, Croce CM. MicroRNA signatures in human ovarian cancer. Cancer Res 2007; 67(18): 8699–8707

    Article  PubMed  CAS  Google Scholar 

  14. Laios A, O’Toole S, Flavin R, Martin C, Kelly L, Ring M, Finn SP, Barrett C, Loda M, Gleeson N, D’Arcy T, McGuinness E, Sheils O, Sheppard B, O’ Leary J. Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer 2008; 7(1): 35

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Sun C, Li N, Yang Z, Zhou B, He Y, Weng D, Fang Y, Wu P, Chen P, Yang X, Ma D, Zhou J, Chen G. miR-9 regulation of BRCA1 and ovarian cancer sensitivity to cisplatin and PARP inhibition. J Natl Cancer Inst 2013; 105(22): 1750–1758

    Article  PubMed  CAS  Google Scholar 

  16. Thiery JP. Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer 2002; 2(6): 442–454

    Article  PubMed  CAS  Google Scholar 

  17. Dai Y, Zhou X. Computational methods for the identification of microRNA targets. Open Access Bioinformatics 2010; 2:29–39

    PubMed  PubMed Central  CAS  Google Scholar 

  18. Dweep H, Sticht C, Pandey P, Gretz N. miRWalk–database: prediction of possible miRNA binding sites by “walking” the genes of three genomes. J Biomed Inform 2011; 44(5): 839–847

    Article  PubMed  CAS  Google Scholar 

  19. Liang CC, Park AY, Guan JL. In vitro scratch assay: a convenient and inexpensive method for analysis of cell migration in vitro. Nat Protoc 2007; 2(2): 329–333

    Article  PubMed  CAS  Google Scholar 

  20. Valster A, Tran NL, Nakada M, Berens ME, Chan AY, Symons M. Cell migration and invasion assays. Methods 2005; 37(2): 208–215

    Article  PubMed  CAS  Google Scholar 

  21. Weng D, Song X, Xing H, Ma X, Xia X, Weng Y, Zhou J, Xu G, Meng L, Zhu T, Wang S, Ma D. Implication of the Akt2/survivin pathway as a critical target in paclitaxel treatment in human ovarian cancer cells. Cancer Lett 2009; 273(2): 257–265

    Article  PubMed  CAS  Google Scholar 

  22. Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelialmesenchymal transitions in development and disease. Cell 2009; 139(5): 871–890

    Article  PubMed  CAS  Google Scholar 

  23. Vergara D, Merlot B, Lucot JP, Collinet P, Vinatier D, Fournier I, Salzet M. Epithelial-mesenchymal transition in ovarian cancer. Cancer Lett 2010; 291(1): 59–66

    Article  PubMed  CAS  Google Scholar 

  24. Hurst DR, Edmonds MD, Welch DR. MetastamiR: the field of metastasis-regulatory microRNA is spreading. Cancer Res 2009; 69(19): 7495–7498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Deo M, Yu JY, Chung KH, Tippens M, Turner DL. Detection of mammalian microRNA expression by in situ hybridization with RNA oligonucleotides. Dev Dyn 2006; 235(9): 2538–2548

    Article  PubMed  CAS  Google Scholar 

  26. Nass D, Rosenwald S, Meiri E, Gilad S, Tabibian-Keissar H, Schlosberg A, Kuker H, Sion-Vardy N, Tobar A, Kharenko O, Sitbon E, Lithwick Yanai G, Elyakim E, Cholakh H, Gibori H, Spector Y, Bentwich Z, Barshack I, Rosenfeld N. miR-92b and miR-9/9* are specifically expressed in brain primary tumors and can be used to differentiate primary from metastatic brain tumors. Brain Pathol 2009; 19(3): 375–383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Luo X, Fan S, Huang W, Zhai S, Ma Z, Li P, Sun SY, Wang X. Downregulation of IRS-1 promotes metastasis of head and neck squamous cell carcinoma. Oncol Rep 2012; 28(2): 659–667

    Article  PubMed  CAS  Google Scholar 

  28. Lu MH, Huang CC, Pan MR, Chen HH, Hung WC. Prospero homeobox 1 promotes epithelial-mesenchymal transition in colon cancer cells by inhibiting E-cadherin via miR-9. Clin Cancer Res 2012; 18(23): 6416–6425

    Article  PubMed  CAS  Google Scholar 

  29. Gwak JM, Kim HJ, Kim EJ, Chung YR, Yun S, Seo AN, Lee HJ, Park SY. MicroRNA-9 is associated with epithelial-mesenchymal transition, breast cancer stem cell phenotype, and tumor progression in breast cancer. Breast Cancer Res Treat 2014; 147(1): 39–49

    Article  PubMed  CAS  Google Scholar 

  30. Wilting SM, Snijders PJ, Verlaat W, Jaspers A, van de Wiel MA, van Wieringen WN, Meijer GA, Kenter GG, Yi Y, le Sage C, Agami R, Meijer CJ, Steenbergen RD. Altered microRNA expression associated with chromosomal changes contributes to cervical carcinogenesis. Oncogene 2013; 32(1): 106–116

    Article  PubMed  CAS  Google Scholar 

  31. Zheng L, Qi T, Yang D, Qi M, Li D, Xiang X, Huang K, Tong Q. MicroRNA-9 suppresses the proliferation, invasion and metastasis of gastric cancer cells through targeting cyclin D1 and Ets1. PLoS One 2013; 8(1): e55719

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Omura N, Li CP, Li A, Hong SM, Walter K, Jimeno A, Hidalgo M, Goggins M. Genome-wide profiling of methylated promoters in pancreatic adenocarcinoma. Cancer Biol Ther 2008; 7(7): 1146–1156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Lehmann U, Hasemeier B, Christgen M, Muller M, Romermann D, Langer F, Kreipe H. Epigenetic inactivation of microRNA gene hsamir- 9–1 in human breast cancer. J Pathol 2008; 214(1): 17–24

    Article  PubMed  CAS  Google Scholar 

  34. Inoue T, Iinuma H, Ogawa E, Inaba T, Fukushima R. Clinicopathological and prognostic significance of microRNA-107 and its relationship to DICER1 mRNA expression in gastric cancer. Oncol Rep 2012; 27(6): 1759–1764

    PubMed  Google Scholar 

  35. Qiu Y, Luo X, Kan T, Zhang Y, Yu W, Wei Y, Shen N, Yi B, Jiang X. TGF-ß upregulates miR-182 expression to promote gallbladder cancer metastasis by targeting CADM1. Mol Biosyst 2014; 10(3): 679–685

    Article  PubMed  CAS  Google Scholar 

  36. Yu J, Lei R, Zhuang X, Li X, Li G, Lev S, Segura MF, Zhang X, Hu G. MicroRNA-182 targets SMAD7 to potentiate TGFß-induced epithelial-mesenchymal transition and metastasis of cancer cells. Nat Commun 2016; 7: 13884

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Basic Research Program of China (973 Program, No. 2015CB553903), National Natural Science Foundation of China (Nos. 81272859, 81372801, 81230038, 81272422, 81302266, 81402163, 81402164, 81501530, and 81572569), and the Science and Technology Project of Shenzhen (No. Jcyj20140416122811911).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kezhen Li.

Additional information

These authors contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, B., Xu, H., Xia, M. et al. Overexpressed miR-9 promotes tumor metastasis via targeting E-cadherin in serous ovarian cancer. Front. Med. 11, 214–222 (2017). https://doi.org/10.1007/s11684-017-0518-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11684-017-0518-7

Keywords

Navigation