Skip to main content

Advertisement

Log in

Fisetin induces apoptosis in human nonsmall lung cancer cells via a mitochondria-mediated pathway

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

The present study investigated the apoptotic effects of fisetin, a phenolic compound, against the human nonsmall cell lung cancer cell line, NCI-H460. Fisetin showed dose-dependent cytotoxic activity against NCI-H460 cells, with 50% inhibition of cell viability occurring at a concentration of 75 μg/mL. Fisetin induced both the production of intracellular reactive oxygen species and apoptosis, as evidenced by apoptotic body formation, DNA fragmentation, an increase in the number of sub-G1 phase cells, and mitochondrial membrane depolarization. Moreover, fisetin significantly modulated the expression of apoptosis-associated proteins, resulting in reduced expression of B cell lymphoma-2, increased expression of Bcl-2-associated X protein, and activation of caspase-9 and caspase-3. In addition, pretreatment with a caspase inhibitor blocked fisetin-induced cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Adams JM, Cory S (1998) The Bcl-2 protein family: arbiters of cell survival. Science 281:1322–1326

    Article  CAS  PubMed  Google Scholar 

  • Afaq F, Adhami VM, Mukhtar H (2005) Photochemoprevention of ultraviolet B signaling and photocarcinogenesis. Mutat Res 571:153–173

    Article  CAS  PubMed  Google Scholar 

  • Arai Y, Watanabe S, Kimira M, Shimoi K, Mochizuki R, Kinae N (2000) Dietary intakes of flavonols, flavones and isoflavones by Japanese women and the inverse correlation between quercetin intake and plasma LDL cholesterol concentration. J Nutr 130:2243–2250

    CAS  PubMed  Google Scholar 

  • Arts IC (2008) A review of the epidemiological evidence on tea, flavonoids, and lung cancer. J Nutr 138:1561S–1566S

    CAS  PubMed  Google Scholar 

  • Bhimani RS, Troll W, Grunberger D, Frenkel K (1993) Inhibition of oxidative stress in HeLa cells by chemopreventive agents. Cancer Res 53:4528–4533

    CAS  PubMed  Google Scholar 

  • Block G, Patterson B, Subar A (1992) Fruit, vegetables, and cancer prevention: a review of the epidemiological evidence. Nutr Cancer 18:1–29

    Article  CAS  PubMed  Google Scholar 

  • Carbone DP, Felip E (2011) Adjuvant therapy in non-small cell lung cancer: future treatment prospects and paradigms. Clin Lung Cancer 12:261–271

    Article  CAS  PubMed  Google Scholar 

  • Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB (1987) Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res 47:936–942

    CAS  PubMed  Google Scholar 

  • Chen YC, Shen SC, Lee WR, Lin HY, Ko CH, Shih CM, Yang LL (2002) Wogonin and fisetin induction of apoptosis through activation of caspase 3 cascade and alternative expression of p21 protein in hepatocellular carcinoma cells SK-HEP-1. Arch Toxicol 76:351–359

    Article  CAS  PubMed  Google Scholar 

  • Cohen GM (1997) Caspases: the executioners of apoptosis. Biochem J 326:1–16

    PubMed Central  CAS  PubMed  Google Scholar 

  • Detterbeck FC, Boffa DJ, Tanoue LT (2009) The new lung cancer staging system. Chest 136:260–271

    Article  PubMed  Google Scholar 

  • Dimas K, Demetzos C, Mitaku S, Marselos M, Tzavaras T, Kokkinopoulos D (2000) Cytotoxic activity of kaempferol glycosides against human leukaemic cell lines in vitro. Pharmacol Res 41:83–86

    Article  PubMed  Google Scholar 

  • Ferreira CG, Huisman C, Giaccone G (2002) Novel approaches to the treatment of non-small cell lung cancer. Crit Rev Oncol Hematol 41:57–77

    Article  PubMed  Google Scholar 

  • Fotsis T, Pepper MS, Montesano R, Aktas E, Breit S, Schweigerer L, Rasku S, Wähälä K, Adlercreutz H (1998) Phytoestrogens and inhibition of angiogenesis. Baillieres Clin Endocrinol Metab 12:649–666

    Article  CAS  PubMed  Google Scholar 

  • Gettinger S, Lynch T (2011) A decade of advances in treatment for advanced non-small cell lung cancer. Clin Chest Med 32:839–851

    Article  PubMed  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Haddad AQ, Venkateswaran V, Viswanathan L, Teahan SJ, Fleshner NE, Klotz LH (2006) Novel antiproliferative flavonoids inducecell cycle arrest in human prostate cancer cell lines. Prostate Cancer Prostatic Dis 9:68–76

    Article  CAS  PubMed  Google Scholar 

  • Hanneken A, Lin FF, Johnson J, Maher P (2006) Flavonoids protect human retinal pigment epithelial cells from oxidative-stress induced death. Invest. Ophthalmol Vis Sci 47:3164–3177

    Article  Google Scholar 

  • Harvey AL (2008) Natural products in drug discovery. Drug Discov Today 13:894–901

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Rosen DG, Zhou Y, Feng L, Yang G, Liu J, Huang P (2005) Mitochondrial manganese-superoxide dismutase expression in ovarian cancer: role in cell proliferation and response to oxidative stress. J Biol Chem 280:39485–39492

    Article  CAS  PubMed  Google Scholar 

  • Huang P, Feng L, Oldham EA, Keating MJ, Plunkett W (2000) Superoxide dismutase as a target for the selective killing of cancer cells. Nature 407:390–395

    Article  CAS  PubMed  Google Scholar 

  • Iida T, Furuta A, Kawashima M, Nishida J, Nakabeppu Y, Iwaki T (2001) Accumulation of 8-oxo-2’- deoxyguanosine and increased expression of hMTH1 protein in brain tumors. Neuro-oncol 3:73–81

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, Thun MJ (2008) Cancer Statistics, 2008. CA Cancer J Clin 58:71–96

    Article  PubMed  Google Scholar 

  • Jo SK, Hong JY, Park HJ, Lee SK (2012) Anticancer activity of novel daphnane diterpenoids from Daphne genkwa through cell-cycle arrest and suppression of Akt/STAT/Src signalings in human lung cancer cells. Biomol Ther 20:513–519

    Article  CAS  Google Scholar 

  • Kang KA, Piao MJ, Kim KC, Cha JW, Zheng J, Yao CW, Chae S, Hyun JW (2014) Fisetin attenuates hydrogen peroxide-induced cell damage by scavenging reactive oxygen species and activating protective functions of cellular glutathione system. In Vitro Cell Dev Biol Anim 50:66–74

    Article  CAS  PubMed  Google Scholar 

  • Khan N, Afaq F, Syed DN, Mukhtar H (2008a) Fisetin, a novel dietary flavonoid, causes apoptosis and cell cycle arrest in human prostate cancer LNCaP cells. Carcinogenesis 29:1049–1056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan N, Asim M, Afaq F, Abu Zaid M, Mukhtar H (2008b) A novel dietary flavonoid fisetin inhibits androgen receptor signaling and tumor growth in athymic nude mice. Cancer Res 68:8555–8563

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Khan N, Afaq F, Khusro FH, Mustafa Adhami V, Suh Y, Mukhtar H (2012) Dual inhibition of phosphatidylinositol 3-kinase/Akt and mammalian target of rapamycin signaling in human nonsmall cell lung cancer cells by a dietary flavonoid fisetin. Int J Cancer 130:1695–1705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim JY, Jeon YK, Jeon W, Nam MJ (2010) Fisetin induces apoptosis in Huh-7 cells via downregulation of BIRC8 and Bcl2L2. Food Chem Toxicol 48:2259–2264

    Article  CAS  PubMed  Google Scholar 

  • Kroemer G, Petit P, Zamzami N, Vayssiere JL, Mignotte B (1995) The biochemistry of programmed cell death. FASEB J 9:1277–1287

    CAS  PubMed  Google Scholar 

  • Le Marchand L, Murphy SP, Hankin JH, Wilkens LR, Kolonel LN (2000) Intake of flavonoids and lung cancer. J Natl Cancer Inst 92:154–160

    Article  PubMed  Google Scholar 

  • Lee US, Ban JO, Yeon ET, Lee HP, Udumula V, Ham YW, Hong JT (2012) Growth inhibitory effect of (E)-2,4-bis(p-hydroxyphenyl)-2-Bbutenal diacetate through induction of apoptotic cell death by increasing DR3 expression in human lung cancer cells. Biomol Ther 20:538–543

    Article  CAS  Google Scholar 

  • Li J, Cheng Y, Qu W, Sun Y, Wang Z, Wang H, Tian B (2011) Fisetin, a dietary flavonoid, induces cell cycle arrest and apoptosis through activation of p53 and inhibition of NF-kappa B pathways in bladder cancer cells. Basic Clin Pharmacol Toxicol 108:84–93

    Article  CAS  PubMed  Google Scholar 

  • Liao YC, Shih YW, Chao CH, Lee XY, Chiang TA (2009) Involvement of the ERK signaling pathway in fisetin reduces invasion and migration in the human lung cancer cell line A549. J Agric Food Chem 57:8933–8941

    Article  CAS  PubMed  Google Scholar 

  • Lu J, Papp LV, Fang J, Rodriguez-Nieto S, Zhivotovsky B, Holmgren A (2006) Inhibition of mammalian thioredoxin reductase by some flavonoids: implications for myricetin and quercetin anticancer activity. Cancer Res 66:4410–4418

    Article  CAS  PubMed  Google Scholar 

  • Maher P, Akaishi T, Abe K (2006) Flavonoid fisetin promotes ERK dependent long-term potentiation and enhances memory. Proc Natl Acad Sci U S A 103:16568–16573

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Murtaza I, Adhami VM, Hafeez BB, Saleem M, Mukhtar H (2009) Fisetin, a natural flavonoid, targets chemoresistant human pancreatic cancer AsPC-1 cells through DR3-mediated inhibition of NF-kappaB. Int J Cancer 125:2465–2473

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Neuhouser ML (2004) Dietary flavonoids and cancer risk: evidence from human population studies. Nutr Cancer 50:1–7

    Article  CAS  PubMed  Google Scholar 

  • Nguyen TT, Tran E, Ong CK, Lee SK, Do PT, Huynh TT, Nguyen TH, Lee JJ, Tan Y, Ong CS, Huynh H (2003) Kaempferol-induced growth inhibition and apoptosis in A549 lung cancer cells is mediated by activation of MEK-MAPK. J Cell Physiol 197:110–121

    Article  CAS  PubMed  Google Scholar 

  • Nickoloff BJ, Qin JZ, Chaturvedi V, Bacon P, Panella J, Denning MF (2002) Life and death signaling pathways contributing to skin cancer. J Investig Dermatol Symp Proc 7:27–35

    Article  CAS  PubMed  Google Scholar 

  • Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C (1991) A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 139:271–279

    Article  CAS  PubMed  Google Scholar 

  • Nishiumi S, Miyamoto S, Kawabata K, Ohnishi K, Mukai R, Murakami A, Ashida H, Terao J (2011) Dietary flavonoids as cancerpreventive and therapeutic biofactors. Front Biosci (Schol Ed) 3:1332–1362

    Article  Google Scholar 

  • Paoletti L, Pastis NJ, Denlinger CE, Silvestri GA (2011) A decade of advances in treatment of early-stage lung cancer. Clin Chest Med 32:827–838

    Article  PubMed Central  PubMed  Google Scholar 

  • Pelicano H, Feng L, Zhou Y, Carew JS, Hileman EO, Plunkett W, Keating MJ, Huang P (2003) Inhibition of mitochondrial respiration: a novel strategy to enhance drug-induced apoptosis in human leukemia cells by a reactive oxygen species-mediated mechanism. J Biol Chem 278:37832–37839

    Article  CAS  PubMed  Google Scholar 

  • Piao MJ, Kim KC, Chae S, Keum YS, Kim HS, Hyun JW (2013) Protective effect of fisetin (3,7,3’,4’-tetrahydroxyflavone) against γ-irradiation-induced oxidative stress and cell damage. Biomol Ther 21:210–215

    Article  CAS  Google Scholar 

  • Ravichandran N, Suresh G, Ramesh B, Manikandan R, Choi YW, Vijaiyan Siva G (2014) Fisetin modulates mitochondrial enzymes and apoptotic signals in benzo(a)pyrene-induced lung cancer. Mol Cell Biochem 390:225–234

    Article  CAS  PubMed  Google Scholar 

  • Rosenkranz AR, Schmaldienst S, Stuhlmeier KM, Chen W, Knapp W, Zlabinger GJ (1992) A microplate assay for the detection of oxidative products using 2′, 7′-dichlorofluorescein-diacetate. J Immunol Meth 156:39–45

    Article  CAS  Google Scholar 

  • Sarkar FH, Li Y (2004) The role of isoflavones in cancer chemoprevention. Front Biosci 9:2714–2724

    Article  CAS  PubMed  Google Scholar 

  • Schumacker PT (2006) Reactive oxygen species in cancer cells: live by the sword, die by the sword. Cancer Cell 10:175–176

    Article  CAS  PubMed  Google Scholar 

  • Silber JR, Bobola MS, Blank A, Schoeler KD, Haroldson PD, Huynh MB, Kolstoe DD (2002) The apurinic/apyrimidinic endonuclease activity of Ape1/Ref-1 contributes to human glioma cell resistance to alkylating agents and is elevated by oxidative stress. Clin Cancer Res 8:3008–3018

    CAS  PubMed  Google Scholar 

  • Suh Y, Afaq F, Johnson JJ, Mukhtar H (2009) A plant flavonoid fisetin induces apoptosis in colon cancer cells by inhibition of COX2 and Wnt/EGFR/NF-kappaB-signaling pathways. Carcinogenesis 30:300–307

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Suh Y, Afaq F, Khan N, Johnson JJ, Khusro FH, Mukhtar H (2010) Fisetin induces autophagic cell death through suppression of mTOR signaling pathway in prostate cancer cells. Carcinogenesis 31:1424–1433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sung B, Pandey MK, Aggarwal BB (2007) Fisetin, an inhibitor of cyclindependent kinase 6, down-regulates nuclear factor-kappa B regulated cell proliferation, antiapoptotic and metastatic gene products through the suppression of TAK-1 and receptorinteracting protein-regulated I kappa B alpha kinase activation. Mol Pharmacol 71:1703–1714

    Article  CAS  PubMed  Google Scholar 

  • Troiano L, Ferraresi R, Lugli E, Nemes E, Roat E, Nasi M, Pinti M, Cossarizza A (2007) Multiparametric analysis of cells with different mitochondrial membrane potential during apoptosis by polychromatic flow cytometry. Nat Protoc 2:2719–2727

    Article  CAS  PubMed  Google Scholar 

  • Vazquez A, Bond EE, Levine AJ, Bond GL (2008) The genetics of the p53 pathway, apoptosis and cancer therapy. Nat Rev Drug Discov 7:979–987

    Article  CAS  PubMed  Google Scholar 

  • Wang IK, Lin-Shiau SY, Lin JK (1999) Induction of apoptosis by apigenin and related flavonoids through cytochrome c release and activation of caspase-9 and caspase-3 in leukaemia HL-60 cells. Eur J Cancer 35:1517–1525

    Article  CAS  PubMed  Google Scholar 

  • Waxman DJ, Schwartz PS (2003) Harnessing apoptosis for improved anticancer gene therapy. Cancer Res 63:8563–8572

    CAS  PubMed  Google Scholar 

  • Yang P, He XQ, Peng L, Li AP, Wang XR, Zhou JW, Liu QZ (2007) The role of oxidative stress in hormesis induced by sodium arsenite in human embryo lung fibroblast (HELF) cellular proliferation model. J Toxicol Environ Health A 70:976–983

    Article  CAS  PubMed  Google Scholar 

  • Yang PM, Tseng HH, Peng CW, Chen WS, Chiu SJ (2012) Dietary flavonoid fisetin targets caspase-3-deficient human breast cancer MCF-7 cells by induction of caspase-7-associated apoptosis and inhibition of autophagy. Int J Oncol 40:469–478

    PubMed  Google Scholar 

  • Zbarsky V, Datla KP, Parkar S, Rai DK, Aruoma OI, Dexter DT (2005) Neuroprotective properties of the natural phenolic antioxidants curcumin and naringenin but not quercetin and fisetin in a 6-OHDA model of Parkinson’s disease. Free Radic Res 39:1119–1125

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Hileman EO, Plunkett W, Keating MJ, Huang P (2003) Free radical stress in chronic lymphocytic leukemia cells and its role in cellular sensitivity to ROS-generating anticancer agents. Blood 101:4098–4104

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2010042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jin Won Hyun.

Additional information

Editor: T. Okamoto

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, K.A., Piao, M.J. & Hyun, J.W. Fisetin induces apoptosis in human nonsmall lung cancer cells via a mitochondria-mediated pathway. In Vitro Cell.Dev.Biol.-Animal 51, 300–309 (2015). https://doi.org/10.1007/s11626-014-9830-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9830-6

Keywords

Navigation