Skip to main content
Log in

Expression and activity of EGFR in human cutaneous melanoma cell lines and influence of vemurafenib on the EGFR pathway

  • Original Research
  • Published:
Targeted Oncology Aims and scope Submit manuscript

Abstract

Data regarding the expression of epidermal growth factor receptor (EGFR) in melanoma and its role in the tumor biology are conflicting. In BRAF V600-mutant melanomas, the expression of EGFR has been associated with acquired resistance to BRAF inhibitors. In this study, we assessed EGFR expression and downstream signaling activity in a panel of melanoma cell lines and we investigated the effects of the BRAF inhibitor vemurafenib on expression of EGFR and its downstream effectors in a subgroup of BRAF-mutant melanoma cells. Three out of 10 melanoma cell lines expressed EGFR. Downstream signaling via ERK and AKT was responsive to either stimulation by EGF or inhibition by erlotinib. Constitutive activation of ERK occurred in all the cell lines investigated whereas constitutive activation of AKT only in three cell lines. Constitutive activation of ERK and AKT was independent from EGFR expression. Vemurafenib did not affect EGFR expression in general, but it increased EGFR phosphorylation in the cell line SkMel5. Induced EGFR phosphorylation was sensitive to treatment with erlotinib. Vemurafenib efficiently blocked ERK activation in all the BRAF-mutant cell lines tested, whereas its effects on AKT activation were dissimilar in the different cell lines. Our data suggest that EGFR is functional but usually inactive in EGFR high-expressing cell lines. Basal EGFR expression unlikely represents a biomarker for predicting the sensitivity to vemurafenib in melanoma, but EGFR activation might represent a mechanism of vemurafenib resistance in a subset of melanoma cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nicholson RI, Gee JM, Harper ME, EGFR and cancer prognosis (2001) Eur J Cancer 37(4):S9–S15

    Article  CAS  PubMed  Google Scholar 

  2. Lee CK, Brown C, Gralla RJ, Hirsh V, Thongprasert S, Tsai CM, Tan EH, Ho JC, da Chu T, Zaatar A et al (2013) Impact of EGFR inhibitor in non-small cell lung cancer on progression-free and overall survival: a meta-analysis. J Natl Cancer Inst 105:595–605

    Article  CAS  PubMed  Google Scholar 

  3. Liao BC, Lin CC, Yang JC (2013) First-line management of EGFR-mutated advanced lung adenocarcinoma: recent developments. Drugs 73:357–369

    Article  CAS  PubMed  Google Scholar 

  4. Real FX, Rettig WJ, Chesa PG, Melamed MR, Old LJ, Mendelsohn J (1986) Expression of epidermal growth factor receptor in human cultured cells and tissues: relationship to cell lineage and stage of differentiation. Cancer Res 46:4726–4731

    CAS  PubMed  Google Scholar 

  5. Sparrow LE, Heenan PJ (1999) Differential expression of epidermal growth factor receptor in melanocytic tumours demonstrated by immunohistochemistry and mRNA in situ hybridization. Australas J Dermatol 40:19–24

    Article  CAS  PubMed  Google Scholar 

  6. Grahn JC, Isseroff RR (2004) Human melanocytes do not express EGF receptors. J Invest Dermatol 123:244–246

    Article  CAS  PubMed  Google Scholar 

  7. Elder DE, Rodeck U, Thurin J, Cardillo F, Clark WH, Stewart R, Herlyn M (1989) Antigenic profile of tumor progression stages in human melanocytic nevi and melanomas. Cancer Res 49:5091–5096

    CAS  PubMed  Google Scholar 

  8. De Wit PE, Moretti S, Koenders PG, Weterman MA, van Muijen GN, Gianotti B, Ruiter DJ (1992) Increasing epidermal growth factor receptor expression in human melanocytic tumor progression. J Invest Dermatol 99:168–173

    Article  PubMed  Google Scholar 

  9. Rákosy Z, Vízkeleti L, Ecsedi S, Vokó Z, Bégány A, Barok M, Krekk Z, Gallai M, Szentirmay Z, Adány R et al (2007) EGFR gene copy number alterations in primary cutaneous malignant melanomas are associated with poor prognosis. Int J Cancer 121:1729–1737

    Article  PubMed  Google Scholar 

  10. Boone B, Jacobs K, Ferdinande L, Taildeman J, Lambert J, Peeters M, Bracke M, Pauwels P, Brochez L (2011) EGFR in melanoma: clinical significance and potential therapeutic target. J Cutan Pathol 38:492–502

    Article  PubMed  Google Scholar 

  11. Mirmohammadsadegh A, Mota R, Gustrau A, Hassan M, Nambiar S, Marini A, Bojar H, Tannapfel A, Hengge UR (2007) ERK1/2 is highly phosphorylated in melanoma metastases and protects melanoma cells from cisplatin-mediated apoptosis. J Invest Dermatol 127:2207–2215

    Article  CAS  PubMed  Google Scholar 

  12. Djerf EA, Trinks C, Abdiu A, Thunell LK, Hallbeck A-L, Walz TM (2009) ErbB receptor tyrosine kinases contribute to proliferation of malignant melanoma cells: inhibition by gefitinib (ZD1839). Melanoma Res 19:156–166

    Article  CAS  PubMed  Google Scholar 

  13. Patel SP, Kim KB, Papadopoulos NE, Hwu W-J, Hwu P, Prieto VG, Bar-Eli M, Zigler M, Dobroff A, Bronstein Y et al (2011) A phase II study of gefitinib in patients with metastatic melanoma. Melanoma Res 21:357–363

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Flaherty KT, Puzanov I, Kim KB, Ribas A, McArthur GA, Sosman JA, O’Dwyer PJ, Lee RJ, Grippo JF, Nolop K et al (2010) Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 363:809–819

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Sosman JA, Kim KB, Schuchter L, Gonzalez R, Pavlick AC, Weber JS, McArthur GA, Hutson TE, Moschos SJ, Flaherty KT et al (2012) Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. N Engl J Med 366:707–714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Prahallad A, Sun C, Huang S, Di Nicolantonio F, Salazar R, Zecchin D, Beijersbergen RL, Bardelli A, Bernards R (2012) Unresponsiveness of colon cancer to BRAF(V600E) inhibition through feedback activation of EGFR. Nature 483:100–103

    Article  CAS  PubMed  Google Scholar 

  17. Keilholz U, Goldin-Lang P, Bechrakis NE, Max N, Letsch A, Schmittel A, Scheibenbogen C, Heufelder K, Eggermont A, Thiel E (2004) Quantitative detection of circulating tumor cells in cutaneous and ocular melanoma and quality assessment by real-time reverse transcriptase-polymerase chain reaction. Clin Cancer Res 10:1605–1612

    Article  CAS  PubMed  Google Scholar 

  18. Schicher N, Paulitschke V, Swoboda A, Kunstfeld R, Loewe R, Pilarski P, Pehamberger H, Hoeller C (2009) Erlotinib and bevacizumab have synergistic activity against melanoma. Clin Cancer Res 15:3495–3502

    Article  CAS  PubMed  Google Scholar 

  19. Bracher A, Cardona AS, Tauber S, Fink AM, Steiner A, Pehamberger H, Niederleithner H, Petzelbauer P, Gröger M, Loewe R (2013) Epidermal growth factor facilitates melanoma lymph node metastasis by influencing tumor lymphangiogenesis. J Invest Dermatol 133:230–238

    Article  CAS  PubMed  Google Scholar 

  20. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S, Teague J, Woffendin H, Garnett MJ, Bottomley W et al (2002) Mutations of the BRAF gene in human cancer. Nature 417:949–954

    Article  CAS  PubMed  Google Scholar 

  21. Bennett DC (2008) How to make a melanoma: what do we know of the primary clonal events? Pigment Cell Melanoma Res 21:27–38

    Article  CAS  PubMed  Google Scholar 

  22. Johannessen CM, Boehm JS, Kim SY, Thomas SR, Wardwell L, Johnson LA, Emery CM, Stransky N, Cogdill AP, Barretina J et al (2010) COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. Nature 468:968–972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Su F, Bradley WD, Wang Q, Yang H, Xu L, Higgins B, Kolinsky K, Packman K, Kim MJ, Trunzer K et al (2012) Resistance to selective BRAF inhibition can be mediated by modest upstream pathway activation. Cancer Res 72:969–978

    Article  CAS  PubMed  Google Scholar 

  24. Corcoran RB, Ebi H, Turke AB, Coffee EM, Nishino M, Cogdill AP, Brown RD, Della Pelle P, Dias-Santagata D, Hung KE et al (2012) EGFR-mediated re-activation of MAPK signaling contributes to insensitivity of BRAF mutant colorectal cancers to RAF inhibition with vemurafenib. Cancer Discov 2:227–235

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Girotti MR, Pedersen M, Sanchez-Laorden B, Viros A, Turajlic S, Niculescu-Duvaz D, Zambon A, Sinclair J, Hayes A, Gore M et al (2013) Inhibiting EGF receptor or SRC family kinase signaling overcomes BRAF inhibitor resistance in melanoma. Cancer Discov 3:158–167

    Article  CAS  PubMed  Google Scholar 

  26. Held MA, Langdon CG, Platt JT, Graham-Steed T, Liu Z, Chakraborty A, Bacchiocchi A, Koo A, Haskins JW, Bosenberg MW et al (2013) Genotype-selective combination therapies for melanoma identified by high-throughput drug screening. Cancer Discov 3:52–67

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Rodriguez-Lopez AM, Smyth T, Curry J, Graham B, McMenamin R, Lyons J Abstract 2772 (2012). AT13387, an HSP90 inhibitor, is effective in both vemurafenib-sensitive and -resistant melanoma models. Cancer Res 72:2772–2772

  28. Atefi M, von Euw E, Attar N, Ng C, Chu C, Guo D, Nazarian R, Chmielowski B, Glaspy JA, Comin-Anduix B et al (2011) Reversing melanoma cross-resistance to BRAF and MEK inhibitors by co-targeting the AKT/mTOR pathway. PLoS One 6:e28973

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Jiang CC, Lai F, Thorne RF, Yang F, Liu H, Hersey P, Zhang XD (2011) MEK-independent survival of B-RAFV600E melanoma cells selected for resistance to apoptosis induced by the RAF inhibitor PLX4720. Clin Cancer Res 17:721–730

    Article  CAS  PubMed  Google Scholar 

  30. Vergani E, Vallacchi V, Frigerio S, Deho P, Mondellini P, Perego P, Cassinelli G, Lanzi C, Testi MA, Rivoltini L et al (2011) Identification of MET and SRC activation in melanoma cell lines showing primary resistance to PLX4032. Neoplasia 13:1132–1142

    PubMed Central  CAS  PubMed  Google Scholar 

  31. Sánchez-Hernández I, Baquero P, Calleros L, Chiloeches A (2012) Dual inhibition of (V600E)BRAF and the PI3K/AKT/mTOR pathway cooperates to induce apoptosis in melanoma cells through a MEK-independent mechanism. Cancer Lett 314:244–255

    Article  PubMed  Google Scholar 

  32. Nazarian R, Shi H, Wang Q, Kong X, Koya RC, Lee H, Chen Z, Lee MK, Attar N, Sazegar H et al (2010) Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation. Nature 468:973–977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Won J-K, Yang HW, Shin S-Y, Lee JH, Heo WD, Cho K-H (2012) The crossregulation between ERK and PI3K signaling pathways determines the tumoricidal efficacy of MEK inhibitor. J Mol Cell Biol 4:153–163

    Article  PubMed  Google Scholar 

  34. Yuen H-F, Abramczyk O, Montgomery G, Chan K-K, Huang Y-H, Sasazuki T, Shirasawa S, Gopesh S, Chan KW, Fennell D et al (2012) Impact of oncogenic driver mutations on feedback between the PI3K and MEK pathways in cancer cells. Biosci Rep 32:413–422

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflicts of Interest

All authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Gross.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Cellular localization of EGFR. Five human melanoma cell lines were stained with a fluorescent antibody against EGFR. To evaluate extracellular EGFR expression, cells were stained directly after scratching and washing. For intracellular staining, cells were fixed and permeabilized prior to incubation with the fluorescent antibody. The human squamous cell carcinoma cell line FaDu served as positive control (GIF 59 kb)

High-resolution image (TIFF 45,603 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gross, A., Niemetz-Rahn, A., Nonnenmacher, A. et al. Expression and activity of EGFR in human cutaneous melanoma cell lines and influence of vemurafenib on the EGFR pathway. Targ Oncol 10, 77–84 (2015). https://doi.org/10.1007/s11523-014-0318-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11523-014-0318-9

Keywords

Navigation