Skip to main content

Advertisement

Log in

Free Copper, Ferroxidase and SOD1 Activities, Lipid Peroxidation and NO x Content in the CSF. A Different Marker Profile in Four Neurodegenerative Diseases

  • Original Paper
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The understanding of oxidative damage in different neurodegenerative diseases could enhance therapeutic strategies. Our objective was to quantify lipoperoxidation and other oxidative products as well as the activity of antioxidant enzymes and cofactors in cerebrospinal fluid (CSF) samples. We recorded data from all new patients with a diagnosis of either one of the four most frequent neurodegenerative diseases: Parkinson’s disease (PD), Alzheimer’s disease (AD), Huntington’s disease (HD) and lateral amyotrophic sclerosis (ALS). The sum of nitrites and nitrates as end products of nitric oxide (NO) were increased in the four degenerative diseases and fluorescent lipoperoxidation products in three (excepting ALS). A decreased Cu/Zn-dependent superoxide dismutase (SOD) activity characterized the four diseases. A significantly decreased ferroxidase activity was found in PD, HD and AD, agreeing with findings of iron deposition in these entities, while free copper was found to be increased in CSF and appeared to be a good biomarker of PD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Price DL (1999) New order from neurological disorders. Nature 399(suppl):A3–A5

    PubMed  CAS  Google Scholar 

  2. Halliwell B (1992) Reactive oxygen species in the central nervous system. J Neurochem 59:1609–1623

    Article  PubMed  CAS  Google Scholar 

  3. Ischiropoulos H, Beckman JS (2003) Oxidative stress and nitration in neurodegeneration: cause, effect, or association? J Clin Invest 111:163–169

    PubMed  CAS  Google Scholar 

  4. Jenner P, Schapira AH, Marsden CD (1992) New insights into the cause of Parkinson’s disease. Neurology 42:2241–2250

    PubMed  CAS  Google Scholar 

  5. Schon EA, Manfredi G (2003) Neuronal degeneration and mitochondrial dysfunction. J Clin Invest 111:303–312

    PubMed  CAS  Google Scholar 

  6. Youdim MBH, Ben Shachar D, Yehuda S, Riederer P (1990) The role of iron in the Basal Ganglion. Adv Neurol 53:155–162

    PubMed  CAS  Google Scholar 

  7. Dexter DT, Jenner P, Schapira AHV, Marsden CD (1992) Alterations in levels of iron, ferritin, and other trace metals in neurodegenerative diseases affecting the basal ganglia. Ann Neurol 32:S94–S100

    Article  PubMed  CAS  Google Scholar 

  8. Rios C, Alvarez-Vega R, Rojas P (1995) Depletion of copper and manganese in brain after MPTP treatment of mice. Pharmacol Toxicol 76:348–352

    Article  PubMed  CAS  Google Scholar 

  9. Alcaraz-Zubeldia M, Rojas P, Boll C, Rios C (2001) Neuroprotective effect of acute and chronic administration of copper (II) sulfate against MPP+ neurotoxicity in mice. Neurochem Res 26:59–64

    Article  PubMed  CAS  Google Scholar 

  10. Pall HS, Williams AC, Blake DR et al (1987) Raised cerebrospinal-fluid copper concentration in Parkinson’s disease. Lancet 2:238–241

    Article  PubMed  CAS  Google Scholar 

  11. Boll MC, Sotelo J, Otero E, Alcaraz-Zubeldia M, Rios C (1999) Reduced ferroxidase activity in the CSF from patients with Parkinson’s disease. Neurosci Lett 265:155–158

    Article  PubMed  CAS  Google Scholar 

  12. Huntington’s Disease Collaborative Research Group (1993) A novel gene containing a trinucleotid repeat that is unstable on Huntington’s disease chromosomes. Cell 72:971–983

    Article  Google Scholar 

  13. McKhann G, Drachman D, Folstein M et al (1994) Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA work group under the auspices of the Department of Health and Human Services task force on Alzheimer’s disease. Neurology 34:939–944

    Google Scholar 

  14. Rothstein JD, Van Kammen M, Levey AI, Martin J, Kuncl JW (1995) Selective loss of glial glutamate transporter GTL1 in amyotrophic lateral sclerosis. Ann Neurol 38:73–84

    Article  PubMed  CAS  Google Scholar 

  15. Zoia C, Cogliati T, Tagliabue E et al (2004) Glutamate transporters in platelets: EAAT1 decrease in aging and in Alzheimer’s disease. Neurobiol Aging 25:149–157

    Article  PubMed  CAS  Google Scholar 

  16. Zecca L, Rosati M, Renella R et al (1998) Nitrite and nitrate levels in cerebrospinal fluid of normal subjects. J Neural Transm 105:627–633

    Article  PubMed  CAS  Google Scholar 

  17. Naidoo R, Knapp ML (1992) Studies of lipid peroxidation products in cerebrospinal fluid and serum in multiple sclerosis and other conditions. Clin Chem 38:2449–2454

    PubMed  CAS  Google Scholar 

  18. Rosen DR, Siddique T, Patterson D et al (1993) Mutations in Cu/Zn superoxide dismutase are associated with familiar amyotrophic lateral sclerosis. Nature 362:59–62

    Article  PubMed  CAS  Google Scholar 

  19. Waggoner DJ, Bartnikas TB, Gitlin JD (1999) The role of copper in neurodegenerative diseases. Neurobiol Dis 6:221–230

    Article  PubMed  CAS  Google Scholar 

  20. Harris ZL, Takahashi Y, Miyajima H, Serizawa M, McGiliwray RTA, Gitlin JD (1995) Aceruloplasminemia: molecular characterization of this disorder of iron metabolism. Proc Natl Acad Sci USA 92:2539–2543

    Article  PubMed  CAS  Google Scholar 

  21. Alonso ME, Yescas P, Cisneros B et al (1997) Analysis of the (CAG)n repeat causing Huntington’s disease in a Mexican population. Clin Genet 51:225–230

    Article  PubMed  CAS  Google Scholar 

  22. Huntington Study Group (1996) Unified Huntington’s disease rating scale: reliability and consistency. Mov Disord 11:136–142

    Article  Google Scholar 

  23. Folstein MF, Folstein SE, McHugh PR (1975) “Mini- mental state”: a practical method for grading the cognitive state of subjects for the clinician. J Psychiatr Res 12:189–198

    Article  PubMed  CAS  Google Scholar 

  24. Moroney JT, Bagiella E, Desmond DW et al (1997) Meta-analysis of the Hachinski Ischemic score in pathologically verified dementias. Neurology 49:1096–1105

    PubMed  CAS  Google Scholar 

  25. Brooks BR (1994) El Escorial World Federation of Neurology criteria for the diagnosis of amyotrophic lateral sclerosis: subcommittee on motor neuron diseases/amyotrophic lateral sclerosis of the World Federation of Neurology research group on neuromuscular diseases and the El Escorial “clinical limits of amyotrophic lateral sclerosis” workshop contributors. J Neurol Sci 124(suppl):96–107

    Article  PubMed  Google Scholar 

  26. ALS CNTF Treatment Study Phase I-II Study Group (1996) The ALS functional rating scale: assessment of activities of daily living in patients with amyotrophic lateral sclerosis. Arch Neurol 53:141–147

    Google Scholar 

  27. Boll MC, Alcaraz-Zubeldia M, Montes S, Murillo-Bonilla LM, Rios C (2003) Raised nitrates level and low SOD activity in the CSF in sporadic ALS. Neurochem Res 28(5):699–703

    Article  PubMed  CAS  Google Scholar 

  28. Gutteridge JMC, Halliwell B (1990) The measurement and mechanism of lipid peroxidation in biological systems. TIBS 15:129–135

    PubMed  CAS  Google Scholar 

  29. Estevez AG, Spear N, Manuel SM et al (1998) Role of endogenous nitric oxide and peroxynitrite formation in the survival and death of motor neurons in culture. Prog Brain Res 118:269–280

    Article  PubMed  CAS  Google Scholar 

  30. Brookes P, Levonen AL, Shiva S et al (2002) Mitochondria: regulators of signal transduction by reactive oxygen and nitrogen species. Free Rad Biol Med 33:755–764

    Article  PubMed  CAS  Google Scholar 

  31. Corona JC, Tovar-y-Romo LB, Tapia R (2007) Glutamate excitotoxicity and therapeutic targets for amyotrophic lateral sclerosis. Expert Opin Ther Targets 11:1415–1428

    Article  PubMed  CAS  Google Scholar 

  32. Hochstrasser H, Bauer P, Walter U et al (2004) Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease. Neurology 63:1912–1917

    PubMed  CAS  Google Scholar 

  33. Patel BN, Dunn RJ, Jeong SY et al (2002) Ceruloplasmin regulates iron levels in the CNS and prevents free radical injury. J Neurosci 2215:6578–6586

    Google Scholar 

  34. Bayer TA, Multhaup G (2005) Involvement of amyloid beta precursor protein (AbetaPP) modulated copper homeostasis in Alzheimer’s disease. J Alzheimers Dis 8:201–206

    PubMed  CAS  Google Scholar 

  35. Brown DR (2001) Copper and prion disease. Brain Res Bull 55:165–173

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank all physicians and nurses involved in this study for their help and support, in particular Dr. Noffal from the clinical laboratory of the NINN. A doctoral grant No. 96086 from CONACyT also provided considerable support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camilo Rios.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boll, MC., Alcaraz-Zubeldia, M., Montes, S. et al. Free Copper, Ferroxidase and SOD1 Activities, Lipid Peroxidation and NO x Content in the CSF. A Different Marker Profile in Four Neurodegenerative Diseases. Neurochem Res 33, 1717–1723 (2008). https://doi.org/10.1007/s11064-008-9610-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11064-008-9610-3

Keywords

Navigation