Skip to main content

Advertisement

Log in

Podoplanin and CD34 in peripheral nerve sheath tumours: focus on neurofibromatosis 1-associated atypical neurofibroma

  • Laboratory Investigation - Human/Animal Tissue
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Patients suffering from neurofibromatosis type 1 and 2 (NF1 and NF2) are the main risk groups to develop peripheral nerve sheath tumours (PNSTs). In the present study, adhesion molecules CD34 and podoplanin were assessed in regard to their value for tumour classification and as indicators for tumour progression. A total of 103 NF1-, NF2- and schwannomatosis-associated neurofibromas, schwannomas and malignant peripheral nerve sheath tumours (MPNST), as well as 20 sporadic vestibular schwannomas and 9 control tissue samples, were labelled immunohistochemically for detection of podoplanin and CD34. CD34 was shown to be expressed in MPNST and all benign PNSTs except for the compact cellular parts of both, schwannomas and atypical neurofibromas. Podoplanin showed an inverse expression pattern to CD34 labelling mainly the compact parts of schwannoma and atypical neurofibroma. MPNSTs were characterized by strong podoplanin staining at the invasive front. NF1-patients who suffered from atypical neurofibromas did not develop MPNST at a higher frequency than other NF1-patients, although these tumours expressed podoplanin. Ki-67 proliferation indices did not differ significantly between neurofibromas, atypical neurofibromas and schwannomas. In accordance with other studies, CD34 was found to be of limited value for classification and grading of PNST due to its ubiquitous expression. Podoplanin expression in schwannoma and atypical neurofibroma adds to other phenotypic and genotypic similarities between these tumours, like nuclear atypia, regressive changes and euploid polyploidisation. Podoplanin expression in atypical neurofibroma was not associated with tumour progression towards MPNST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen JS, McNagny KM (2008) Novel functions of the CD34 family. J Cell Sci 121:3683–3692

    Article  PubMed  CAS  Google Scholar 

  2. Raica M, Cimpean AM, Ribatti D (2008) The role of podoplanin in tumor progression and metastasis. Anticancer Res 28:2997–3006

    PubMed  Google Scholar 

  3. Wicki A, Christofori G (2007) The potential role of podoplanin in tumour invasion. Br J Cancer 96:1–5

    Article  PubMed  CAS  Google Scholar 

  4. Hegedus B, Dasgupta B, Shin JE et al (2007) Neurofibromatosis-1 regulates neuronal and glial cell differentiation from neuroglial progenitors in vivo by both cAMP- and Ras-dependent mechanisms. Cell Stem Cell 1:443–457

    Article  PubMed  CAS  Google Scholar 

  5. Ruggieri M (1999) The different forms of neurofibromatosis. A review. Childs Nerv Syst 15:295–308

    Article  PubMed  CAS  Google Scholar 

  6. Xu G, O’Connell P, Viskochil D et al (1990) The Neurofibromatosis type 1 gene encodes a protein related to GAP. Cell 62:599–608

    Article  PubMed  CAS  Google Scholar 

  7. Evans DG, Baser ME, McGaughran J, Sharif S, Howard E, Moran A (2002) Malignant peripheral nerve sheath tumours in neurofibromatosis 1. J Med Genet 39:311–314

    Article  PubMed  CAS  Google Scholar 

  8. Hagel C, Zils U, Peiper M et al (2007) Histopathology and clinical outcome of NF1-associated sporadic malignant peripheral nerve sheath tumors. J Neurooncol 82:187–192

    Article  PubMed  CAS  Google Scholar 

  9. Ferrari A, Bisogno G, Macaluso A et al (2007) Soft-tissue sarcomas in children and adolescents with neurofibromatosis type 1. Cancer 109:1406–1412

    Article  PubMed  Google Scholar 

  10. Houshmandi SS, Emnett RJ, Giovannini M, Gutmann DH (2009) The neurofibromatosis 2 protein, Merlin, regulates glial cell growth in an ErbB2- and Src-dependent manner. Mol Cell Biol 29:1472–1486

    Article  PubMed  CAS  Google Scholar 

  11. Trofatter JA, MacCollin MM (1993) A novel moesin-, ezrin-, radixin-like gene is a candidate for the neurofibromatosis 2 tumor suppressor. Cell 72:791–800

    Article  PubMed  CAS  Google Scholar 

  12. Boyd C, Smith MJ, Kluwe L, Balogh A, MacCollin M, Plotkin SR (2008) Alterations in the SMARCB1 (INI1) tumor suppressor gene in familial schwannomatosis. Clin Genet 74:358–366

    Article  PubMed  CAS  Google Scholar 

  13. MacCollin M, Chiocca EA, Evans DG et al (2005) Diagnostic criteria for schwannomatosis. Neurology 64:1838–1845

    Article  PubMed  CAS  Google Scholar 

  14. Gutmann DH, Aylsworth A, Carey JC et al (1997) The diagnostic evaluation and multidisciplinary management of neurofibromatosis 1 and neurofibromatosis 2. JAMA 278:51–57

    Article  PubMed  CAS  Google Scholar 

  15. Stumpf DA, Alksne JF, Annegers JF (1988) Neurofibromatosis NIH consensus development conference statement. Arch Neurol 45:575–578

    Google Scholar 

  16. Baser ME, Evans DGR, Gutmann DH (2003) Neurofibromatosis 2. Curr Opin Neurol 16:27–33

    Article  PubMed  Google Scholar 

  17. Scheithauer BW, Louis DN, Hunter S, Woodruff JM, Antonescu CR (2007) Neurofibroma. In: Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) WHO Classification of tumours of the central nervous system. International Agency for Research on Cancer, Lyon, pp 156–157

    Google Scholar 

  18. Jokinen CH, Dadras SS, Goldblum JR, van de Rijn M, West RB, Rubin BP (2008) Diagnostic implications of podoplanin expression in peripheral nerve sheath neoplasms. Am J Clin Pathol 129:886–893

    Article  PubMed  Google Scholar 

  19. Drew E, Merzaban JS, Seo W, Ziltener HJ, McNagny KM (2005) CD34 and CD43 inhibit mast cell adhesion and are required for optimal mast cell reconstitution. Immunity 22:43–57

    Article  PubMed  CAS  Google Scholar 

  20. Krause DS, Fackler MJ, Civin CI, May WS (1996) CD34: structure, biology, and clinical utility. Blood 87:1–13

    PubMed  CAS  Google Scholar 

  21. Nielsen JS, McNagny KM (2007) Influence of host irradiation on long-term engraftment by CD34-deficient hematopoietic stem cells. Blood 110:1076–1077

    Article  PubMed  CAS  Google Scholar 

  22. Andrews RG, Singer JW, Bernstein ID (1989) Precursors of colony-forming cells in humans can be distinguished from colony-forming cells by expression of the CD33 and CD34 antigens and light scatter properties. J Exp Med 169:1721–1731

    Article  PubMed  CAS  Google Scholar 

  23. Berenson RJ, Andrews RG, Bensinger WI et al (1988) Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest 81:951–955

    Article  PubMed  CAS  Google Scholar 

  24. Ema H, Suda T, Miura Y, Nakauchi H (1990) Colony formation of clone-sorted human hematopoietic progenitors. Blood 75:1941–1946

    PubMed  CAS  Google Scholar 

  25. Fina L, Molgaard HV, Robertson D et al (1990) Expression of the CD34 gene in vascular endothelial cells. Blood 75:2417–2426

    PubMed  CAS  Google Scholar 

  26. Young PE, Baumhueter S, Lasky LA (1995) The sialomucin CD34 is expressed onhematopoietic cells and blood vessels during murine development. Blood 85:96–105

    PubMed  CAS  Google Scholar 

  27. Khalifa MA, Montgomery EA, Ismiil N, Azumi N (2000) What are the CD34+ cells in benign peripheral nerve sheath tumors? Double immunostaining study of CD34 and S-100 protein. Am J Clin Pathol 114:123–126

    Article  PubMed  CAS  Google Scholar 

  28. Tardío JC (2009) CD34-reactive tumors of the skin An updated review of an ever-growing list of lesions. J Cutan Pathol 36:89–102

    Article  PubMed  Google Scholar 

  29. Weiss SW, Nickoloff BJ (1993) CD34 is expressed by a distinctive cell population in peripheral nerve, nerve sheath tumors, and related lesions. Am J Surg Pathol 17:1039–1045

    Article  PubMed  CAS  Google Scholar 

  30. Kalof AN, Cooper K (2009) D2–40 immunohistochemistry—so far! Adv Anat Pathol 16:62–64

    Article  PubMed  CAS  Google Scholar 

  31. Sonne SB, Herlihy AS, Hoei-Hansen CE et al (2006) Identity of M2A (D2–40) antigen and gp36 (Aggrus, T1α-2, podoplanin) in human developing testis, testicular carcinoma in situ and germ-cell tumours. Virchows Arch 449:200–206

    Article  PubMed  CAS  Google Scholar 

  32. Chu AY, Litzky LA, Pasha TL, Acs G, Zhang PJ (2005) Utility of D2–40, a novel mesothelial marker, in the diagnosis of malignant mesothelioma. Mod Pathol 18:105–110

    Article  PubMed  CAS  Google Scholar 

  33. Martin-Villar E, Scholl FG, Gamallo C et al (2005) Characterization of human PA2.26 antigen (T1alpha-2, podoplanin), a small membrane mucin induced in oral squamous cell carcinomas. Int J Cancer 113:899–910

    Article  PubMed  CAS  Google Scholar 

  34. Wicki A, Lehembre F, Wick N, Hantusch B, Kerjaschki D, Christofori G (2006) Tumor invasion in the absence of epithelial–mesenchymal transition: podoplanin-mediated remodeling of the actin cytoskeleton. Cancer Cell 9:261–272

    Article  PubMed  CAS  Google Scholar 

  35. Valeyrie-Allanore L, Ismaïli N, Bastuji-Garin S et al (2005) Symptoms associated with malignancy of peripheral nerve sheath tumours: a retrospective study of 69 patients with neurofibromatosis 1. Br J Dermatol 153:79–82

    Article  PubMed  CAS  Google Scholar 

  36. Valeyrie-Allanore L, Ortonne N, Lantieri L et al (2008) Histopathologically dysplastic neurofibromas in neurofibromatosis 1: diagnostic criteria, prevalence and clinical significance. Br J Dermatol 158:1008–1012

    Article  PubMed  CAS  Google Scholar 

  37. Mautner VF, Brenner W, Fünsterer C, Hagel C, Gawad K, Friedrich RE (2007) Clinical relevance of positron emission tomography and magnetic resonance imaging in the progression of internal plexiform neurofibroma in NF1. Anticancer Res 27:1819–1822

    PubMed  CAS  Google Scholar 

  38. Brenner W, Friedrich RE, Gawad KA, Hagel C, von Deimling A, de Wit M, Buchert R, Clausen M, Mautner VF (2006) Prognostic relevance of FDG PET in patients with neurofibromatosis type-1 and malignant peripheral nerve sheath tumours. Eur J Nucl Med Mol Imaging 33:428–432

    Article  PubMed  Google Scholar 

  39. Hruska A, Bollmann R, Kovács RB, Bollmann M, Bodó M, Sápi Z (2004) DNA ploidy and chromosome (FISH) pattern analysis of peripheral nerve sheath tumors. Cell Oncol 26:335–345

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

We are grateful to Mr. M. Haberkorn for excellent technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Hagel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Naber, U., Friedrich, R.E., Glatzel, M. et al. Podoplanin and CD34 in peripheral nerve sheath tumours: focus on neurofibromatosis 1-associated atypical neurofibroma. J Neurooncol 103, 239–245 (2011). https://doi.org/10.1007/s11060-010-0385-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-010-0385-4

Keywords

Navigation