Skip to main content
Log in

Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multi-walled carbon nanotubes

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Carbon nanotubes (CNTs), the most promising material with unique characteristics, find its application in different fields ranging from composite materials to medicine and from electronics to energy storage. However, little is known about the mechanisms behind the interaction of these particles with cells and their toxicity. The aim of this study was to assess the effects, after intraperitoneal (ip) injection, of functionalized multi-walled carbon nanotubes (MWCNT) (carboxyl groups) on various hepatotoxicity and oxidative stress biomarkers (ROS, LHP, ALT, AST, ALP, and morphology of liver) in the mouse model. The mice were dosed ip at 0.25, 0.5, and 0.75 mg/kg/day for 5 days of purified/functionalized MWCNTs and two controls (negative; saline and positive; carbon black 0.75 mg/kg) as appropriate. Samples were collected 24 h after the fifth day treatment following standard protocols. Exposure to carboxylated functionalized MWCNT; the body-weight gain of the mice decreased, induced reactive oxygen species (ROS), and enhanced the activities of serum amino-transferases (ALT/AST), alkaline phosphatases (ALP), and concentration of lipid hydro peroxide compared to control. Histopathology of exposed liver showed a statistically significant effect in the morphological alterations of the tissue compared to controls. The cellular findings reported here do suggest that purified carboxylated functionalized MWCNT has the potential to induce hepatotoxicity in Swiss-Webster mice through activation of the mechanisms of oxidative stress, which warrant in vivo animal exposure studies. However, more studies of functionalization in the in vivo toxicity of MWCNTs are required and parallel comparison is preferred.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–59

    Article  CAS  Google Scholar 

  2. Dresselhans MS, Dresselhaus G, Avouris P (eds) (2001) Carbon nanotubes: synthesis, structure, properties and applications. Springer, Berlin

    Google Scholar 

  3. Hu H, Ni YC, Mandal SK, Montana V, Zhao B, Haddon RC, Parpura V (2005) Polyethyleneimine functionalized single walled carbon nanotubes as a substrate for neuronal growth. J Phys Chem B 109(10):4285–4289

    Article  PubMed  CAS  Google Scholar 

  4. Shokuhfar T, Makradi A, Titus E, Cabral G, Ahzi S, Sousa AC, Belouettar S, Gracio J (2008) Prediction of the mechanical properties of hydroxyapatite/polymethyl methacrylate/carbon nanotubes nanocomposite. J Nanosci Nanotechnol 8:4279–4284

    Article  PubMed  CAS  Google Scholar 

  5. Gruner G (2006) Carbon nanotube transistors for biosensing applications. Anal Bioanal Chem 384(2):322–335

    Article  PubMed  CAS  Google Scholar 

  6. McDevitt MR, Chattopadhyay D, Kappel BJ, Jaggi JS, Schiffman SR, Antczak C, Njardarson JT, Brentjens R, Scheinberg DA (2007) Tumor targeting with antibody-functionalized radiolabeled carbon nanotubes. J Nucl Med 48(7):1181–1189

    Article  Google Scholar 

  7. Liu Z, Chen K, Davis C, Sherlock S, Cao QZ, Chen ZY, Dai HJ (2008) Drug-delivery with carbon nanotubes for in vivo cancer treatment. Cancer Res 68(16):6652–6660

    Article  PubMed  CAS  Google Scholar 

  8. Lu FS, Gu LR, Meziani MJ, Wang X, Luo PG, Veca LM, Cao L, Sun YP (2009) Advances in bioapplications of carbon nanotubes. Adv Mater 21(2):139–152

    Article  CAS  Google Scholar 

  9. Stern ST, McNeil SE (2008) Nanotechnology safety concerns revisited. Toxicol Sci 101:4–21

    Article  PubMed  CAS  Google Scholar 

  10. Lam CW, James JT, McCluskey R, Hunter RL (2004) Pulmonary toxicity of single-wall carbon nanotubes in mice 7 and 90 days after intratracheal instillation. Toxicol Sci 77:126–134

    Article  PubMed  CAS  Google Scholar 

  11. Shvedova AA, Castranova V, Kisin ER, Schwegler-Berry D, Murray AR, Gandelsman VZ, Maynard A, Baron P (2003) Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocyte cells. J Toxicol Environ Health A66(20):1909–1926

    Article  Google Scholar 

  12. Warheit DB (2006) What is currently known about the health risks related to carbon nanotube exposures? Carbon 44:1064–1069

    Article  CAS  Google Scholar 

  13. Takagi A, Hirose A, Nishimura T, Fukumori N, Ogata A, Ohashi N, Kitajima S, Kanno J (2008) Induction of mesothelioma in p53± mouse by intraperitoneal application of multi-wall carbon nanotube. J Toxicol Sci 33(1):105–116

    Article  PubMed  CAS  Google Scholar 

  14. Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K (2008) Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol 3(7):423–428

    Article  PubMed  CAS  Google Scholar 

  15. Ji Z, Zhang D, Li L, Shen X, Deng X, Dong L, Wu M, Liu Y (2009) The hepatotoxicity of multi-walled carbon nanotubes in mice. Nanotechnology 20:445101–445109

    Article  PubMed  Google Scholar 

  16. Patlolla AK, Mcginnis B, Tchounwou PB (2011) Biochemical and histo-pathological evaluation of functionalized single-walled carbon nanotube in Swiss-Webster mice. J Appl Toxicol 31(1):75–83

    Article  PubMed  CAS  Google Scholar 

  17. Patlolla AK, Hussain SM, Schlager J, Patlolla S, Tchounwou PB (2010) Comparative clastogenic study of functionalized and non-functionalized multi-walled carbon nanotube in bone marrow cells of Swiss-Webster mice. Environ Toxicol 25(6):608–621

    Article  PubMed  CAS  Google Scholar 

  18. Cui D, Tian F, Ozkan CS, Wang M, Gao H (2005) Effect of single-wall carbon nanotubes on human HEK293 cells. Toxicol Lett 155:73–85

    Article  PubMed  CAS  Google Scholar 

  19. Jia G, Wang H, Yan L, Wang X, Pei R, Yan T, Zhao Y, Guo X (2005) Cytotoxicity of carbon nanomaterials: single-wall nanotube, multiwall nanotube, and fullerene. Environ Sci Technol 39:1378–1383

    Article  PubMed  CAS  Google Scholar 

  20. Monteiro-Riviere NA, Nemanich RJ, Inman AO, Wang YY, Riviere JE (2005) Multi-walled carbon nanotube interactions with human epidermal keratinocytes. Toxicol Lett 155:377–384

    Article  PubMed  CAS  Google Scholar 

  21. Tian F, Cui D, Sehwarz H, Estrada GG, Kobayashi H (2006) Cytotoxicity of single-wall carbon nanotube on human fibroblasts. Toxicol In Vitro 20:1202–1212

    Article  PubMed  CAS  Google Scholar 

  22. Sayes CM, Liang F, Hudson JL, Mendez J, Guo W, Beach JM, Moore VC, Doyle CD, West JL, Billups WE, Ausman KD, Colvin VL (2006) Functionalization density dependence of single-walled carbon nanotubes cytotoxicity in vitro. Toxicol Lett 161(2):135–142

    Article  PubMed  CAS  Google Scholar 

  23. Muller J, Decordier I, Hoet PH, Lombaert N, Thomassen L, Huaux F, Lison D, Kirsch-Volders M (2008) Clastogenic and aneugenic effects of multiwalled carbon nanotube in epithelial cells. Carcinogenesis 29:427–433

    Article  PubMed  CAS  Google Scholar 

  24. Liu Z, Tabakman S, Welsher K, Dai HJ (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120

    Article  PubMed  CAS  Google Scholar 

  25. Wick P, Manser P, Limbach LK, Dettlaff-Weglikowska U, Krumeich F, Roth S, Stark WJ, Bruinink A (2007) The degree and kind of agglomeration affect carbon nanotube cytotoxicity. Toxicol Lett 168(2):121–131

    Article  PubMed  CAS  Google Scholar 

  26. Nel A, Xia T, Madler L, Li N (2006) Toxic potential of materials at the nano level. Science 311:622–627

    Article  PubMed  CAS  Google Scholar 

  27. Shvedova AA, Kisin E, Murray AR, Johnson VJ, Gorelik O, Arepalli S, Hubbs AF, Mercer RR, Keohavong P, Sussman N, Jin J, Yin J, Stone S, Chen BT, Deye G, Maynard A, Castranova V, Baron PA, Kagan VE (2008) Inhalation vs. aspiration of single-walled carbon nanotubes in C57BL/6 mice: inflammation, fibrosis, oxidative stress, and mutagenesis. Am J Physiol Lung Cell Mol Physiol 295(4):L552–L565

    Article  PubMed  CAS  Google Scholar 

  28. Gutteridge JMC, Quinlan GJ (1983) Malondialdehyde formation from lipid peroxides in thiobarbituric acid test. The role of lipid radicals, iron salts and metal chelator. J Appl Biochem 5:293–299

    PubMed  CAS  Google Scholar 

  29. Halliwell B (1984) Oxygen radicals: a common sense look at their nature and medical importance. Med Biol 62:71–77

    PubMed  CAS  Google Scholar 

  30. Murray RK, Granner DK, Mayes PA, Rodwell V (1988) Harper’s biochemistry, 21st edn. Prentice Hall, Englewood Cliffs, pp 138–139

    Google Scholar 

  31. De Zwart LL, Meerman JH, Commandeur JN, Vermeulen NP (1999) Biomarkers of free radical damage applications in experimental animals and in humans. Free Radic Biol Med 26(1–2):202–226; review

    Article  PubMed  Google Scholar 

  32. Zimmerman HJ, Seeff LB (1970) Enzymes in hepatic disease. In: Goodly EL (ed) Diagnostic enzymology. Lea & Febiger, Philadelphia, pp 1–38

    Google Scholar 

  33. Deng XY, Yang ST, Nie HY, Wang HF, Liu YF (2008) A generally adoptable radiotracing method for tracking carbon nanotubes in animals. Nanotechnology 19(7):075101

    Article  PubMed  Google Scholar 

  34. Deng XY, Jia G, Wang HF, Sun HF, Wang X, Yang ST, Wang TC, Liu YF (2007) Translocation and fate of multiwalled carbon nanotubes in vivo. Carbon 45(7):1419–1424

    Article  CAS  Google Scholar 

  35. Liu Z, Cai WB, He LN, Nakayama N, Chen K, Sun XM, Chen XY, Dai HJ (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2:47–52

    Article  PubMed  CAS  Google Scholar 

  36. Cherukuri P, Gannon CJ, Leeuw TK, Schmidt HK, Smalley RE, Curley SA, Weisman RB (2006) Mammalian pharmacokinetics of carbon nanotubes using intrinsic near-infrared fluorescence. Proc Natl Acad Sci USA 103(50):18882–18886

    Article  PubMed  CAS  Google Scholar 

  37. Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multi-molecular layers. J Am Chem Soc 60(2):309–319

    Article  CAS  Google Scholar 

  38. Muller J, Huaux F, Moreau N, Misson P, Heilier JF, Delos M, Arras M, Fonseca A, Nagy JB, Lison D (2005) Respiratory toxicity of multi-wall carbon nanotubes. Toxicol Appl Pharmacol 207:221–231

    Article  PubMed  CAS  Google Scholar 

  39. Giles AR (1987) Guidelines for the use of animals in biomedical research. Thromb Haemost 58(4):1078–1084

    PubMed  CAS  Google Scholar 

  40. Lawler JM, Song W, Demaree SR (2003) Hindlimb unloading increases oxidative stress and disrupt antioxidant capacity in skeletal muscle. Free Radic Biol Med 35:9–16

    Article  PubMed  CAS  Google Scholar 

  41. Reitman S, Frankel S (1957) A colorimetric method for the determination of serum glutamic oxalacetic and glutamic pyruvic transaminases. Am J Clin Pathol 28(1):56–63

    PubMed  CAS  Google Scholar 

  42. Kay HD (1930) Plasma phosphatase. I Method of determination. Some properties of the enzyme. J Biol Chem 89:235–247

    CAS  Google Scholar 

  43. Kerem M, Bendirli N, Gurbuz N, Ekinci O, Bedirli A, Akkaya T, Sakrak O, Pasaoglu H (2007) Effects of acute fenthion toxicity on liver and kidney function and histology in rats. Turk J Med Sci 37(5):281–288

    CAS  Google Scholar 

  44. Oberdörster G, Maynard A, Donaldson K, Castranova V, Fitzpatrick J, Ausman K, Carter J, Karn B, Kreyling W, Lai D, Olin S, Monteiro-Riviere N, Warheit D, Yang H, ILSI Research Foundation/Risk Science Institute Nanomaterial Toxicity Screening Working Group (2005) Principles for characterizing the potential human health effects from exposure to nanomaterials: elements of a screening strategy. Part Fibre Toxicol 6:2–8

    Google Scholar 

  45. Liu Z, Cai WB, He LN, Nakayama N, Chen K, Sun XM, Chen XY, Dai HJ (2007) In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2(1):47–52

    Article  PubMed  CAS  Google Scholar 

  46. Villa CH, McDevitt MR, Escorcia FE, Rey DA, Bergkvist M, Batt CA, Scheinberg DA (2008) Synthesis and biodistribution of oligonucleotide-functionalized tumor-targetable carbon nanotubes. Nano Lett 8(12):4221–4228

    Article  PubMed  CAS  Google Scholar 

  47. Liu Y, Wang H (2007) Nanomedicine: nanotechnology tackles tumours. Nat Nanotechnol 2(1):20–21

    Article  PubMed  CAS  Google Scholar 

  48. Inoue K, Yanagisawa R, Koike E, Nishikawa M, Takano H (2010) Repeated pulmonary exposure to single-walled carbon nanotubes exacerbates allergic inflammation of the airway: possible role of oxidative stress. Free Radic Biol Med 48(7):924–934

    Article  PubMed  CAS  Google Scholar 

  49. Lewinski N, Colvin V, Drezek R (2008) Cytotoxicity of nanoparticles. Small 4(1):26–49

    Article  PubMed  CAS  Google Scholar 

  50. Pulskamp K, Diabate S, Krug HF (2007) Carbon nanotubes show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicol Lett 168(1):58–74

    Article  PubMed  CAS  Google Scholar 

  51. Murakami S, Okubo K, Tsuji Y, Sakata H, Takahashi T, Kikuchi M, Hirayama R (2004) Changes in liver enzymes after surgery in anti-hepatitis C virus-positive patients. World J Surg 28(7):671–674

    Article  PubMed  Google Scholar 

  52. Lacerda L, Ali-Boucetta H, Herrero MA, Pastorin G, Bianco A, Prato M, Kostarelos K (2008) Tissue histology and physiology following intravenous administration of different types of functionalized multiwalled carbon nanotubes. Nanomedicine (Lond) 3(2):149–161

    Article  CAS  Google Scholar 

  53. Reddy AR, Rao MV, Krishna DR, Himabindu V, Reddy YN (2011) Evaluation of oxidative stress and anti oxidant status in rat serum following exposure of carbon nanotubes. Regul Toxicol Pharmacol 59(2):251–257

    Article  PubMed  CAS  Google Scholar 

  54. Roberts RA, Ganey PE, Ju C, Kamendulis LM, Rusyn I, Klaunig JE (2007) Role of kupffer cell in mediating hepatic toxicity and carcinogenesis. Toxicol Sci 96(1):2–15

    Article  PubMed  CAS  Google Scholar 

  55. Guo L, Morris DG, Liu XY, Vaslet C, Hurt RH, Kane AB (2007) Iron bioavailability and redox activity in diverse carbon nanotube samples. Chem Mater 19:3472–3478

    Article  CAS  Google Scholar 

  56. Liu XY, Gurel V, Morris D, Murray DW, Zhitkovich A, Kane AB, Hurt RH (2007) Bioavailability of nickel in single-wall carbon nanotubes. Adv Mater 19:2790–2796

    Article  CAS  Google Scholar 

  57. Liu X, Guo L, Morris D, Kane AB, Hurt RH (2008) Targeted removal of bioavailable metal as a detoxification strategy for carbon nanotubes. Carbon 46:489–500

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported in part by a grant from the Air Forces Research Laboratory/Wright Patterson AFB (Grant No. FA8650-07-1-6851) and in part by a grant from National Institutes of Health-RCMI Center for Environmental Health (Grant No. 2G12RR01349-12) at Jackson State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita K. Patlolla.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patlolla, A.K., Berry, A. & Tchounwou, P.B. Study of hepatotoxicity and oxidative stress in male Swiss-Webster mice exposed to functionalized multi-walled carbon nanotubes. Mol Cell Biochem 358, 189–199 (2011). https://doi.org/10.1007/s11010-011-0934-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-011-0934-y

Keywords

Navigation