Skip to main content
Log in

Convergence of Fructose-Induced NLRP3 Activation with Oxidative Stress and ER Stress Leading to Hepatic Steatosis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

High fructose flux enhances hepatocellular triglyceride accumulation (hepatic steatosis), which is a prime trigger in the emergence of hepatic ailments. Nevertheless, the pathophysiology underlying the process is not completely understood. Emerging evidences have revealed the inputs from multiple cues including inflammation, oxidative stress, and endoplasmic reticulum (ER) stress in the development of hepatic steatosis. Here, we substantiated the role of NLRP3 inflammasome and its convergence with oxidative and ER stress leading to hepatic steatosis under high fructose diet feeding. Male SD rats were fed on 60% high fructose diet (HFrD) for 10 weeks and treated with antioxidant quercetin or NLRP3 inflammasome inhibitor glyburide during the last 6 weeks, followed by metabolic characterization and analysis of hepatic parameters. HFrD-induced hepatic steatosis was associated with the activation of NLRP3 inflammasome, pro-inflammatory response, oxidative, and ER stress in liver. Treatment with quercetin abrogated HFrD-induced oxidative stress, along with attenuation of NLRP3 activation in the liver. On the other hand, inhibition of NLRP3 signaling by glyburide suppressed HFrD-induced oxidative and ER stress. Both glyburide or quercetin treatment significantly attenuated hepatic steatosis, associated with mitigated expression of the lipogenic markers in liver. Our findings verified the association of NLRP3 inflammasome with oxidative and ER stress in fructose-induced lipogenic response and indicate that in addition to be a target of oxidative/ER stress, NLRP3 can act as a trigger for oxidative/ER stress to activate a vicious cycle where these cues act in a complex manner to propagate inflammatory response, leading to hepatic steatosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

All the materials and data reported in the manuscript are available with the corresponding author (AK Tamrakar).

References

  1. Sanders, F.W.B., and J.L. Griffin. 2016. De novo lipogenesis in the liver in health and disease: More than just a shunting yard for glucose. Biological reviews of the Cambridge Philosophical Society 91: 452–468.

    Article  PubMed  Google Scholar 

  2. Lim, J.S., M. Mietus-Snyder, A. Valente, J.M. Schwarz, and R.H. Lustig. 2010. The role of fructose in the pathogenesis of NAFLD and the metabolic syndrome. Nature Reviews Gastroenterology & Hepatology 7: 251–264.

    Article  CAS  Google Scholar 

  3. Sanyal, A.J. 2019. Past, present and future perspectives in nonalcoholic fatty liver disease. Nature Reviews Gastroenterology & Hepatology 16: 377–386.

    Article  Google Scholar 

  4. Hu, Y., I. Semova, X. Sun, H. Kang, S. Chahar, A.N. Hollenberg, D. Masson, M.D. Hirschey, J. Miao, and S.B. Biddinger. 2018. Fructose and glucose can regulate mammalian target of rapamycin complex 1 and lipogenic gene expression via distinct pathways. Journal of Biological Chemistry 293: 2006–2014.

    Article  CAS  PubMed  Google Scholar 

  5. Arrese, M., D. Cabrera, A.M. Kalergis, and A.E. Feldstein. 2016. Innate immunity and inflammation in NAFLD/NASH. Digestive Diseases and Sciences 61: 1294–1303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Zhang, X., J.H. Zhang, X.Y. Chen, Q.H. Hu, M.X. Wang, R. Jin, Q.Y. Zhang, W. Wang, R. Wang, L.L. Kang, J.S. Li, M. Li, Y. Pan, J.J. Huang, and L.D. Kong. 2015. Reactive oxygen species-induced TXNIP drives fructose-mediated hepatic inflammation and lipid accumulation through NLRP3 inflammasome activation. Antioxidant & Redox Signalling 22: 848–870.

    Article  CAS  Google Scholar 

  7. Wan, X., C. Xu, C. Yu, and Y. Li. 2016. Role of NLRP3 inflammasome in the progression of NAFLD to NASH. Canadian Journal of Gastroenterology and Hepatology 2016: 6489012.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kelley, N., D. Jeltema, Y. Duan, and Y. He. 2019. The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. International Journal of Molecular Sciences 20: 3328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sharma, M., and E.D. Alba. 2021. Structure, activation and regulation of NLRP3 and AIM2 inflammasomes. International Journal of Molecular Sciences 22: 872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yu, X., L.P. Ren, C. Wang, Y.J. Zhu, H.Y. Xing, J. Zhao, and G.Y. Song. 2018. Role of X-box binding protein-1 in fructose-induced de novo lipogenesis in HepG2 cells. Chinese Medical Journal (Engl). 131: 2310–2319.

    Article  CAS  PubMed Central  Google Scholar 

  11. Malhi, H., and R.J. Kaufman. 2011. Endoplasmic reticulum stress in liver disease. Journal of Hepatology 54: 795–809.

    Article  CAS  PubMed  Google Scholar 

  12. Takaki, A., D. Kawai, and K. Yamamoto. 2013. Multiple hits, including oxidative stress, as pathogenesis and treatment target in non-alcoholic steatohepatitis (NASH). International Journal of Molecular Sciences 14: 20704–20728.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Minutoli, L., D. Puzzolo, M. Rinaldi, N. Irrera, H. Marini, V. Arcoraci, A. Bitto, G. Crea, A. Pisani, F. Squadrito, V. Trichilo, D. Bruschetta, A. Micali, and D. Altavilla. 2016. ROS-mediated NLRP3 inflammasome activation in brain, heart, kidney, and testis ischemia/reperfusion injury. Oxidative Medicine and Cellular Longevity 2016: 2183026.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bauernfeind, F., E. Bartok, A. Rieger, L. Franchi, G. Nunez, and V. Hornung. 2011. Cutting edge: Reactive oxygen species inhibitors block priming, but not activation, of the nlrp3 inflammasome. Journal of Immunology 187: 613–617.

    Article  CAS  Google Scholar 

  15. Munoz-Planillo, R., P. Kuffa, G. Martinez-Colon, B.L. Smith, T.M. Rajendiran, and G. Nunez. 2013. K+ efflux is the common trigger of nlrp3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38: 1142–1153.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou, Y., Z. Tong, S. Jiang, W. Zheng, J. Zhao, and X. Zhou. 2020. The roles of endoplasmic reticulum in NLRP3 inflammasome activation. Cells 9: 1219.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Buchanan, B.W., A.B. Mehrtash, C.L. Broshar, A.M. Runnebohm, B.J. Snow, L.N. Scanameo, M. Hochstrasser, and E.M. Rubenstein. 2019. Endoplasmic reticulum stress differentially inhibits endoplasmic reticulum and inner nuclear membrane protein quality control degradation pathways. Journal of Biological Chemistry 294: 19814–19830.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kim, S., Y. Joe, S.O. Jeong, M. Zheng, S.H. Back, S.W. Park, S.W. Ryter, and H.T. Chung. 2014. Endoplasmic reticulum stress is sufficient for the induction of IL-1b production via activation of the NF-jB and inflammasome pathways. Innate Immunity 20: 799–815. https://doi.org/10.1177/1753425913508593.

    Article  CAS  PubMed  Google Scholar 

  19. Bronner, D.N., B.H. Abuaita, X. Chen, K.A. Fitzgerald, G. Nuñez, Y. He, X.M. Yin, and M.X.D. O’Riordan. 2015. Endoplasmic reticulum stress activates the inflammasome via NLRP3-and caspase-2-driven mitochondrial damage. Immunity 43: 451–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Collino, M., E. Benetti, M. Rogazzo, R. Mastrocola, M.M. Yaqoob, M. Aragno, et al. 2013. Reversal of the deleterious effects of chronic dietary HFCS-55 intake by PPAR-δ agonism correlates with impaired NLRP3 inflammasome activation. Biochemical Pharmacology 85: 257–264.

    Article  CAS  PubMed  Google Scholar 

  21. Gupta, A.P., P. Singh, R. Garg, G.R. Valicherla, M. Riyazuddin, A.A. Syed, Z. Hossain, and J.R. Gayen. 2019. Pancreastatin inhibitor activates AMPK pathway via GRP78 and ameliorates dexamethasone induced fatty liver disease in C57BL/6 mice. Biomedicine & Pharmacotherapy 116: 108959.

    Article  CAS  Google Scholar 

  22. Verma, D.K., S. Gupta, J. Biswas, N. Joshi, A. Singh, P. Gupta, S. Tiwari, K.S. Raju, S. Chaturvedi, M. Wahajuddin, and S. Singh. 2018. New therapeutic activity of metabolic enhancer piracetam in treatment of neurodegenerative disease: Participation of caspase independent death factors, oxidative stress, inflammatory responses and apoptosis. BBA Molecular Basis of Disease 1864: 2078–2096.

    Article  CAS  PubMed  Google Scholar 

  23. Bagul, P.K., H. Middela, S. Matapally, R. Padiya, T. Bastia, K. Madhusudana, B.R. Reddy, S. Chakravarty, and S.K. Banerjee. 2012. Attenuation of insulin resistance, metabolic syndrome and hepatic oxidative stress by resveratrol in fructose-fed rats. Pharmacological Research 66: 260–268.

    Article  CAS  PubMed  Google Scholar 

  24. Ding, X.Q., W.Y. Wu, R.Q. Jiao, T.T. Gu, Q. Xu, Y. Pan, and L.D. Kong. 2018. Curcumin and allopurinol ameliorate fructose-induced hepatic inflammation in rats via miR-200a-mediated TXNIP/NLRP3 inflammasome inhibition. Pharmacological Research. 137: 64–75.

    Article  CAS  PubMed  Google Scholar 

  25. Le, K.A., and L. Tappy. 2006. Metabolic effects of fructose. Current Opinion in Clinical Nutrition and Metabolic Care 9: 469–475.

    Article  CAS  PubMed  Google Scholar 

  26. Jaiswal, N., C.K. Maurya, J. Pandey, A.K. Rai, and A.K. Tamrakar. 2015. Fructose-induced ROS generation impairs glucose utilization in L6 skeletal muscle cells. Free Radical Research 49: 1055–1068.

    Article  CAS  PubMed  Google Scholar 

  27. Hetz, C. 2012. The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nature Reviews Molecular Cell Biology 13: 89–102.

    Article  CAS  PubMed  Google Scholar 

  28. Lu, J., and A. Holmgren. 2013. The thioredoxin antioxidant system. Free Radical Biology and Medicine 66: 75–87.

    Article  PubMed  Google Scholar 

  29. Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology. 11: 136–140.

    Article  CAS  PubMed  Google Scholar 

  30. Zahid, A., B. Li, A.J.K. Kombe, T. Jin, and J. Tao. 2019. Pharmacological inhibitors of the NLRP3 inflammasome. Frontiers in Immunology 10: 2538.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kim, G.N., and H.D. Jang. 2009. Protective mechanism of quercetin and rutin using glutathione metabolism on HO-induced oxidative stress in HepG2 cells. Annals of the New York Academy of Sciences 1171: 530–537.

    Article  CAS  PubMed  Google Scholar 

  32. Harijith, A., D.L. Ebenezer, and V. Natarajan. 2014. Reactive oxygen species at the crossroads of inflammasome and inflammation. Frontiers in Physiology 5: 352.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.

    Article  CAS  PubMed  Google Scholar 

  34. Todoric, J., G. Di Caro, S. Reibe, D.C. Henstridge, C.R. Green, A. Vrbanac, F. Ceteci, C. Conche, R. McNulty, S. Shalapour, K. Taniguchi, P.J. Meikle, J.D. Watrous, R. Moranchel, et al. 2020. Fructose stimulated de novo lipogenesis is promoted by inflammation. Nature Metabolism 2: 1034–1045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nomura, K., and T. Yamanouchi. 2012. The role of fructose-enriched diets in mechanisms of nonalcoholic fatty liver disease. Journal of Nutritional Biochemistry 23: 203–208.

    Article  CAS  PubMed  Google Scholar 

  36. Choe, J.Y., and S.K. Kim. 2017. Quercetin and ascorbic acid suppress fructose-induced NLRP inflammasome activation by blocking intracellular shuttling of TXNIP in human macrophage cell lines. Inflammation 40: 980–994.

    Article  CAS  PubMed  Google Scholar 

  37. Hotamisligil, G.S. 2010. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140: 900–917.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lebeaupin, C., E. Proics, C.H. de Bieville, D. Rousseau, S. Bonnafous, S. Patouraux, G. Adam, V.J. Lavallard, C. Rovere, O. Le Thuc, M.C. Saint-Paul, R. Anty, A.S. Schneck, A. Iannelli, J. Gugenheim, A. Tran, P. Gual, and B. Bailly-Maitre. 2015. ER stress induces NLRP3 inflammasome activation and hepatocyte death. Cell Death Disease 6: e1879.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Chong, W.C., M.D. Shastri, and R. Eri. 2017. Endoplasmic reticulum stress and oxidative stress: A vicious nexus implicated in bowel disease pathophysiology. International Journal of Molecular Sciences 18: 771–780.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Zhang, C., X. Chen, R.M. Zhu, Y. Zhang, T. Yu, H. Wang, H. Zhao, M. Zhao, Y.L. Ji, Y.H. Chen, X.H. Meng, W. Wei, and D.X. Xu. 2012. Endoplasmic reticulum stress is involved in hepatic SREBP-1c activation and lipid accumulation in fructose-fed mice. Toxicology Letters 212: 229–240.

    Article  CAS  PubMed  Google Scholar 

  41. Cho, I.J., D.H. Oh, J. Yoo, Y.C. Hwang, K.J. Ahn, H.Y. Chung, S.W. Jeong, J.Y. Moon, S.H. Lee, S.J. Lim, and I.K. Jeong. 2021. Allopurinol ameliorates high fructose diet induced hepatic steatosis in diabetic rats through modulation of lipid metabolism, inflammation, and ER stress pathway. Scientific Reports 11: 9894.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang, W., C. Wang, X.Q. Ding, Y. Pan, T.T. Gu, M.X. Wang, Y.L. Liu, F.M. Wang, S.J. Wang, and L.D. Kong. 2013. Quercetin and allopurinol reduce liver thioredoxin-interacting protein to alleviate inflammation and lipid accumulation in diabetic rats. British Journal of Pharmacology 169: 1352–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lerner, A.G., J.P. Upton, P.V. Praveen, R. Ghosh, Y. Nakagawa, A. Igbaria, S. Shen, V. Nguyen, B.J. Backes, M. Heiman, et al. 2012. Ire1alpha induces thioredoxin-interacting protein to activate the nlrp3 inflammasome and promote programmed cell death under irremediable ER stress. Cell Metabolism 16: 250–264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhang, Y., X. Qu, H. Gao, J. Zhai, L. Tao, J. Sun, Y. Song, and J. Zhang. 2020. Quercetin attenuates NLRP3 inflammasome activation and apoptosis to protect INH-induced liver injury via regulating SIRT1 pathway. International Immunopharmacology 85: 106634.

    Article  CAS  PubMed  Google Scholar 

  45. Chanjitwiriya, K., S. Roytrakul, and D. Kunthalert. 2020. Quercetin negatively regulates IL-1beta production in Pseudomonas aeruginosa-infected human macrophages through the inhibition of MAPK/NLRP3 inflammasome pathways. PLoS ONE 15: e0237752.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Hu, Q.H., X. Zhang, Y. Pan, Y.C. Li, and L.D. Kong. 2012. Allopurinol, quercetin and rutin ameliorate renal NLRP3 inflammasome activation and lipid accumulation in fructose-fed rats. Biochemical Pharmacology 84: 113–125.

    Article  CAS  PubMed  Google Scholar 

  47. Yang, X., C. Qu, J. Jia, and Y. Zhan. 2019. NLRP3 inflammasome inhibitor glyburide expedites diabetic-induced impaired fracture healing. Immunobiology 224: 786–791.

    Article  CAS  PubMed  Google Scholar 

  48. Liu, L., Y. Dong, M. Ye, S. Jin, J. Yang, M.E. Joosse, Y. Sun, J. Zhang, M. Lazarev, S.R. Brant, B. Safar, M. Marohn, E. Mezey, and X. Li. 2017. The pathogenic role of NLRP3 inflammasome activation in inflammatory bowel diseases of both mice and humans. Journal of Crohn’s and Colitis 11: 737–750.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge funding support by the grant (EMR/2017/000936) from Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India. SS, AS, SA, FG, and PK acknowledge the financial support in the form of Research Fellowship from the Council of Scientific and Industrial Research (CSIR), New Delhi. This manuscript bears the CDRI communication No. 10438.

Funding

This work was supported by the grant (EMR/2017/000936) from Science and Engineering Research Board (SERB), Department of Science and Technology, Government of India.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by S. Singh, A. Sharma, B. Guru, S. Ahmad, F. Gulzar, I. Ahmad, and P. Kumar. Conceptualization, supervision, and data analysis were performed by A.K. Tamrakar. The first draft of the manuscript was written by S. Singh and A.K. Tamrakar and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Akhilesh K. Tamrakar.

Ethics declarations

Ethics Approval

Animal experimental protocol reported in the study was approved by the Institutional Animal Ethics Committee (IAEC) of the CSIR-Central Drug Research Institute, Lucknow, and work with the animals was conducted in accordance with the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 180 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, S., Sharma, A., Ahmad, S. et al. Convergence of Fructose-Induced NLRP3 Activation with Oxidative Stress and ER Stress Leading to Hepatic Steatosis. Inflammation 46, 217–233 (2023). https://doi.org/10.1007/s10753-022-01727-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-022-01727-9

KEY WORDS

Navigation