Skip to main content
Log in

Selective COX-2 Inhibition Reduces Leukocyte Sticking and Improves the Microcirculation in TNBS Colitis

  • Gastrointestinal Circulation
  • Published:
Digestive Diseases and Sciences Aims and scope Submit manuscript

Abstract

The role of cyclooxygenase-2 inhibitors in the course of experimental colitis is controversially discussed. The aim of this study was to evaluate leukocyte–endothelium interaction and colitis activity after applying the selective cyclooxygenase-2 inhibitor NS-398 in a rat trinitrobenzene sulfonic acid (TNBS) colitis model. The acute phase of TNBS colitis is characterized by a significant reduction of capillary blood flow, capillary density, diuresis, and weight and a significant increase in capillary permeability, leukocyte sticking, and hematocrit. Applying the selective cyclooxygenase-2 inhibitor NS-398 leads to a significant improvement of all microcirculatory parameters and clinical findings compared to the (untreated) colitis group. There are no histopathological differences between the individual colitis groups. Acute colitis is characterized by an extensive disturbance of microcirculation together with signs of systemic inflammatory response syndrome. These alterations are significantly improved by inhibiting cyclooxygenase-2. The results support the described correlation between cyclooxygenase activation and leukocyte–endothelium interaction. Moreover, they underscore the postulated relation between leukocyte–endothelium interaction and capillary blood flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moncada S, Gryglewski R, Bunting S, Vane JR: An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263:663–665, 1976

    Article  CAS  PubMed  Google Scholar 

  2. Needleman P, Turk J, Jakschik BA, Morrison AR, Lefkowith JB: Arachidonic acid metabolism. Annu Rev Biochem 55:69–102, 1986

    Article  CAS  PubMed  Google Scholar 

  3. Sharon P, Ligumsky M, Rachmilewitz D, Zor U: Role of prostaglandins in ulcerative colitis. Enhanced production during active disease and inhibition by sulfasalazine. Gastroenterology 75:638–640, 1978

    CAS  PubMed  Google Scholar 

  4. Rampton DS, Sladen GE, Youlten LJ: Rectal mucosal prostaglandin E2 release and its relation to disease activity, electrical potential difference, and treatment in ulcerative colitis. Gut 21:591–596, 1980

    CAS  PubMed  Google Scholar 

  5. Ligumsky M, Karmeli F, Sharon P, Zor U, Cohen F, Rachmilewitz D: Enhanced thromboxane A2 and prostacyclin production by cultured rectal mucosa in ulcerative colitis and its inhibition by steroids and sulfasalazine. Gastroenterology 81:444–449, 1981

    CAS  PubMed  Google Scholar 

  6. Boughton-Smith NK, Hawkey CJ, Whittle BJ: Biosynthesis of lipoxygenase and cyclo-oxygenase products from [14C]-arachidonic acid by human colonic mucosa. Gut 24:1176–1182, 1983

    CAS  PubMed  Google Scholar 

  7. Sharon P, Stenson WF: Metabolism of arachidonic acid in acetic acid colitis in rats. Similarity to human inflammatory bowel disease. Gastroenterology 88:55–63, 1985

    CAS  PubMed  Google Scholar 

  8. Zipser RD, Patterson JB, Kao HW, Hauser CJ, Locke R: Hypersensitive prostaglandin and thromboxane response to hormones in rabbit colitis. Am J Physiol 249:G457–g463, 1985

    CAS  PubMed  Google Scholar 

  9. Rachmilewitz D, Simon PL, Schwartz LW, Griswold DE, Fondacaro JD, Wasserman MA: Inflammatory mediators of experimental colitis in rats. Gastroenterology 97:326–337, 1989

    CAS  PubMed  Google Scholar 

  10. Kim H-S, Berstad A: Experimental colitis in animal models. Scand J Gastroenterol 27:529–537, 1992

    CAS  PubMed  Google Scholar 

  11. McCartney SA, Mitchell JA, Fairclough PD, Farthing MJ, Warner TD: Selective COX-2 inhibitors and human inflammatory bowel disease. Aliment Pharmacol Ther 13:1115–1117, 1999

    Article  CAS  PubMed  Google Scholar 

  12. Fiocchi C: Inflammatory bowel disease: etiology and pathogenesis. Gastroenterology 115:182–205, 1998

    Article  CAS  PubMed  Google Scholar 

  13. Hendel J, Nielsen OH: Expression of cyclooxygenase-2 mRNA in active inflammatory bowel disease. Am J Gastroenterol 92:1170–1173, 1997

    CAS  PubMed  Google Scholar 

  14. Singer II, Kawka DW, Schloemann S, Tessner T, Riehl T, Stenson WF: Cyclooxygenase 2 is induced in colonic epithelial cells in inflammatory bowel disease. Gastroenterology 115:297–306, 1998

    Article  CAS  PubMed  Google Scholar 

  15. Cuzzocrea S, Mazzon E, Serraino I, et al.: Celecoxib, a selective cyclo-oxygenase-2 inhibitor reduces the severity of experimental colitis induced by dinitrobenzene sulfonic acid in rats. Eur J Pharmacol 431:91–102, 2001

    Article  CAS  PubMed  Google Scholar 

  16. Karmeli F, Cohen P, Rachmilewitz D: Cyclo-oxygenase-2 inhibitors ameliorate the severity of experimental colitis in rats. Eur J Gastroenterol Hepatol 12:223–231, 2000

    CAS  PubMed  Google Scholar 

  17. Mahadevan U, Loftus EV Jr, Tremaine WJ, Sandborn WJ: Safety of selective cyclooxygenase-2 inhibitors in inflammatory bowel disease. Am J Gastroenterol 97:910–914, 2002

    Article  CAS  PubMed  Google Scholar 

  18. Khan I, Al-Awadi FM, Thomas N, Haridas S, Anim JT: Cyclooxygenase-2 inhibition and experimental colitis: beneficial effects of phosphorothioated antisense oligonucleotide and meloxicam. Scand J Gastroenterol 37:1428–1436, 2002

    CAS  PubMed  Google Scholar 

  19. Reuter BK, Asfaha S, Buret A, Sharkey KA, Wallace JL: Exacerbation of inflammation-associated colonic injury in rat through inhibition of cyclooxygenase-2. J Clin Invest 98:2076–2085, 1996

    CAS  PubMed  Google Scholar 

  20. Lesch CA, Kraus ER, Sanchez B, Gilbertsen R, Guglietta A: Lack of beneficial effect of COX-2 inhibitors in an experimental model of colitis. Methods Find Exp Clin Pharmacol 21:99–104, 1999

    Article  CAS  PubMed  Google Scholar 

  21. Nakamura S, Ohtani H, Watanabe Y, et al.: In situ expression of the cell adhesion molecules in inflammatory bowel disease: evidence of immunologic activation of vascular endothelial cells. Lab Invest 69:77–85, 1993

    CAS  PubMed  Google Scholar 

  22. Binion DG, West GA, Ina K, Ziats NP, Emancipator SN, Fiocchi C: Enhanced leukocyte binding by intestinal microvascular endothelial cells in inflammatory bowel disease. Gastroenterology 112:1895–1907, 1997

    Article  CAS  PubMed  Google Scholar 

  23. Binion DG, West GA, Volk EE, et al.: Acquired increase in leucocyte binding by intestinal microvascular endothelium in inflammatory bowel disease. Lancet 352:1742–1746, 1998

    Article  CAS  PubMed  Google Scholar 

  24. Panés J, Granger DN: Leukocyte—endothelial cell interactions: molecular mechanisms and implications in gastrointestinal disease. Gastroenterology 114:1066–1090, 1998

    PubMed  Google Scholar 

  25. House StD, Lipowsky HH: Leukocyte—endothelium adhesion: microhemodynamics in mesentery of the cat. Microvasc Res 34:363–376, 1987

    Article  CAS  PubMed  Google Scholar 

  26. Oda M, Han J-Y, Nakamura M: Endothelial cell dysfunction in microvasculature: relevance to disease processes. Clin Hemorheol Microcirc 23:199–211, 2000

    CAS  PubMed  Google Scholar 

  27. Stanimirovic D, Sharpio A, Wong J, Hutchison J, Durkin J: The induction of ICAM-1 in human cerebromicrovascular endothelial cells (HCEC) by ischemia-like conditions promotes enhanced neutrophil/HCEC adhesion. J Neuroimmunol 76:193–205, 1997

    Article  CAS  PubMed  Google Scholar 

  28. Kruschewski M, Foitzik T, Perez-Cantó A, Hübotter A, Buhr HJ: Changes of colonic mucosal microcirculation and histology in two colitis models: an experimental study using intravital microscopy and a new histological scoring system. Dig Dis Sci 46:2336–2343, 2001

    Article  CAS  PubMed  Google Scholar 

  29. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL: Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 96:795–803, 1989

    CAS  PubMed  Google Scholar 

  30. Masferrer JL, Zweifel BS, Manning PT, et al.: Selective inhibition of inductible cyclooxygenase 2 in vivo is antiinflammatory and nonulcerogenic. Proc Natl Acad Sci 91:3228–3232, 1994

    CAS  PubMed  Google Scholar 

  31. Masferrer JL: COX-2 inhibitors. A new class of antiangiogenic agents. Ann NY Acad Sci 889:84–86, 1999

    CAS  PubMed  Google Scholar 

  32. Tegeder I: Effects of selective and unselective cyclooxygenase inhibitors on prostanoid release from various rat organs. J Pharmacol Exp Ther 292:1161–1168, 2000

    CAS  PubMed  Google Scholar 

  33. Ghosh AK, Hirasawa N, Niki H, Ohouchi K: Cyclooxygenase-2 mediated angiogenesis in carrageenin-induced granulation tissue in rats. J Pharmacol Exp Ther 292:802–809, 2000

    Google Scholar 

  34. Mithöfer K, Schmidt J, Gebhard MM, Buhr HJ, Herfarth Ch, Klar E: Measurement of blood flow in pancreatic exchange capillaries with FITC-labeled erythrocytes. Microvasc Res 49:33–48, 1995

    Article  PubMed  Google Scholar 

  35. Nolte D, Zeintl H, Steinbauer M, Pickelmann S, Messmer K: Functional capillary density: an indicator of tissue perfusion? Int J Microcirc 15:244–249, 1995

    CAS  Google Scholar 

  36. Klyscz T, Jünger M, Jung F, Zeintl H: Cap Image—ein neuartiges computergestütztes Videobildanalysesystem für die dynamische Kapillarmikroskopie. Biomed Technik 42:168–175, 1997

    CAS  Google Scholar 

  37. Hoffmann JN, Vollmar B, Inthorn D, Schildberg FW, Menger MD: A chronic model for intravital microscopic study of microcirculatory disorders and leukocyte/endothelial cell interaction during normotensive endotoxemia. Shock 12:355–364, 1999

    CAS  PubMed  Google Scholar 

  38. Eibl G, Hotz HG, Faulhaber J, Kirchengast M, Buhr HJ, Foitzik T: Effect of endothelin and endothelin receptor blockade on capillary permeability in experimental pancreatitis. Gut 46:390–394, 2000

    Article  CAS  PubMed  Google Scholar 

  39. Granger DN, Kvietys PR, Perry MA: Leukocyte—endothelial cell adhesion induced by ischemia and reperfusion. Can J Physiol Pharmacol 71:67–75, 1993

    CAS  PubMed  Google Scholar 

  40. Granger DN, Kubes P: The microcirculation and inflammation: modulation of leukocyte—endothelial cell adhesion. J Leukoc Biol 55:662–675, 1994

    CAS  PubMed  Google Scholar 

  41. Foitzik T, Eibl G, Hotz HG, Faulhaber J, Kirchengast M, Buhr HJ: Endothelin receptor blockade in severe acute pancreatitis leads to systemic enhancement of microcirculation, stabilization of capillary permeability, and improved survival rates. Surgery 127:399–407, 2000

    Article  Google Scholar 

  42. Biancone L, Tosti C, Geremia A, et al.: Rofecoxib and early relapse of inflammatory bowel disease: an open-label trial. Aliment Pharmacol Ther 19:755–764, 2004

    Article  CAS  PubMed  Google Scholar 

  43. Matuk R, Crawford J, Abreu MT, Targan SR, Vasiliauskas EA, Papadakis KA: The spectrum of gastrointestinal toxicity and effect on disease activity of selective cyclooxygenase-2 inhibitors in patients with inflammatory bowel disease. Inflamm Bowel Dis10:352–356, 2004

    PubMed  Google Scholar 

  44. Martin AR, Villegas I, La Casa C, Alarcon de la Lastra C: The cyclo-oxygenase-2 inhibitor, rofecoxib, attenuates mucosal damage due to colitis induced by trinitrobenzene sulphonic acid in rats. Eur J Pharmacol 481:281–291, 2003

    CAS  PubMed  Google Scholar 

  45. Zamuner SR, Warrier N, Buret AG, MacNaughton WK, Wallace JL: Cyclooxygenase 2 mediates post-inflammatory colonic secretory and barrier dysfunction. Gut 52:1714–1720, 2003

    Article  CAS  PubMed  Google Scholar 

  46. Menger MD, Lehr H-A: Scope and perspectives of intravital microscopy—bridge over from in vitro to in vivo. Immunol Today 14:519–522, 1993

    Article  CAS  PubMed  Google Scholar 

  47. Beagley KW, Black CA, Elson CO: Strain differences in susceptibility to TNBS-induced colitis. Gastroenterology 100:A560, 1991

    Google Scholar 

  48. Shibata Y, Taruishi M, Ashida T: Experimental ileitis in dogs and colitis in rats with trinitrobenzene sulfonic acid—colonoscopic and histopathologic studies. Gastroenterol Jpn 28:518–527, 1993

    CAS  PubMed  Google Scholar 

  49. Wirtz S, Neurath MF: Animal models of intestinal inflammation: new insights into the molecular pathogenesis and immunotherapy of inflammatory bowel disease. Int J Colorectal Dis 15:144–160, 2000

    Article  CAS  PubMed  Google Scholar 

  50. Malizia G, Calabrese A, Cottone M, et al.: Expression of leukocyte adhesion molecules by mucosal mononuclear phagocytes in inflammatory bowel disease. Gastroenterology 100:150–159, 1991

    CAS  PubMed  Google Scholar 

  51. Koizumi M, King N, Lobb R, Benjamin C, Podolsky DK: Expression of vascular adhesion molecules in inflammatory bowel disease. Gastroenterology 103:840–847, 1992

    CAS  PubMed  Google Scholar 

  52. Albelda SM, Smith CW, Ward PA: Adhesion molecules and inflammatory injury. FASEB J 8:504–512, 1994

    CAS  PubMed  Google Scholar 

  53. Jones SC, Banks RE, Haidar A, et al.: Adhesion molecules in inflammatory bowel disease. Gut 36:724–730, 1995

    CAS  PubMed  Google Scholar 

  54. Hogaboam CM, Muller MJ, Collins SM, Hunt RH: An orally active non-selective endothelin receptor antagonist, bosentan, markedly reduces injury in rat model of colitis. Eur J Pharmacol 309:261–269, 1996

    Article  CAS  PubMed  Google Scholar 

  55. Carlos TM, Harlan JM: Leukocyte—endothelial adhesion molecules. Blood 84:2068–2101, 1994

    CAS  PubMed  Google Scholar 

  56. Arndt H, Palitzsch K-D, Anderson DC, Rusche J, Grisham MB, Granger DN: Leukocyte—endothelial cell adhesion in a model of intestinal inflammation. Gut 37:374–379, 1995

    CAS  PubMed  Google Scholar 

  57. del Zoppo GJ: Microvascular responses to cerebral ischemia/inflammation. Ann NY Acad Sci 823:132–147, 1997

    CAS  PubMed  Google Scholar 

  58. Sanz M-J, Johnston B, Issekutz A, Kubes P: Endothelin-1 causes P-selectin-dependent leukocyte rolling and adhesion within rat mesenteric microvessels. Am J Physiol 277 (Heart Circ Physiol 46):H1823–H1830, 1999

    CAS  PubMed  Google Scholar 

  59. Vapaatalo H, Mervaala E: Clinically important factors influencing endothelial function. Med Sci Monit 7:1075–1085, 2001

    CAS  PubMed  Google Scholar 

  60. Bertuglia S, Colantuoni A, Intaglietta M: Effect of leukocyte adhesion and microvascular permeability on capillary perfusion during ischemia—reperfusion injury in hamster cheek pouch. Int J Microcirc Clin Exp 13:13–26, 1993

    CAS  PubMed  Google Scholar 

  61. He P, Wang J, Zeng M: Leukocyte adhesion and microvessel permeability. Am J Physiol Heart Circ Physiol 278:1686–1694, 2000

    Google Scholar 

  62. Michel CC, Curry FE: Microvascular Permeability. Physiol Rev 79:703–761, 1999

    CAS  PubMed  Google Scholar 

  63. Muckart DJ, Bhagwanjee S: American College of Chest Physicians/Society of Critical Care Medicine Consensus Conference definitions of the systemic inflammatory response syndrome and allied disorders in relation to critically injured patients. Crit Care Med 25:1789–1795, 1997

    CAS  PubMed  Google Scholar 

  64. Foitzik T, Faulhaber J, Hotz HG, Kirchengast M, Buhr HJ: Endothelin receptor blockade improves fluid sequestration, pancreatic CBF and survival in severe experimental pancreatitis. Ann Surg 228:670–675, 1998

    Article  CAS  PubMed  Google Scholar 

  65. Lush CW, Kvietys PR: Microvascular dysfunction in sepsis. Microcirculation 7:83–101, 2000

    Article  CAS  PubMed  Google Scholar 

  66. Karnik AM, Bashir R, Khan FA, Carvounis CP: Renal involvement in the systemic inflammatory reaction syndrome. Ren Fail 20:103–116, 1998

    CAS  PubMed  Google Scholar 

  67. Best WR, Becktel JM, Singleton JW, Kern F Jr: Development of a Crohn’s disease activity index. National Cooperative Crohn’s Disease Study. Gastroenterology 70:439–444, 1976

    CAS  PubMed  Google Scholar 

  68. Lankisch PG, Pohl U, Otto J, Rahlf G: When should treatment of acute experimental pancreatitis be started? The early phase of bile-induced acute pancreatitis. Res Exp Med 188:123–129, 1988

    Article  CAS  Google Scholar 

  69. Boros M, Massberg S, Baranyi L, Okada H, Messmer K: Endothelin 1 induces leukocyte adhesion in submucosal venules of the rat small intestine. Gastroenterology 114:103–114, 1988

    Google Scholar 

  70. Lienenlüke B, Stojanovic T, Fiebig T, Fayyazi A, Germann T, Hecker M: Thalidomide impairment of trinitrobenzene sulphonic acid-induced colitis in the rat—role of endothelial cell—leukocyte interaction. Br J Pharmacol 133:1414–1423, 2001

    Article  PubMed  Google Scholar 

  71. Wakefield AJ, Ekbom A, Dhillon AP, Pittilo RM, Pounder RE: Crohn’s disease: pathogenesis and persistant measles virus infection. Gastroenterology 108:911–916, 1995

    Article  CAS  PubMed  Google Scholar 

  72. Hodgson HJ: Pathogenesis of Crohn’s disease. Baillieres Clin Gastroenterol 12:1–17, 1998

    Article  CAS  PubMed  Google Scholar 

  73. Mark KS, Trickler WJ, Miller DW: Tumor necorsis factor-α induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. J Pharmacol Exp Ther 297:1051–1058, 2001

    CAS  PubMed  Google Scholar 

  74. Souto JC, Martinez E, Roca M, et al.: Prothrombotic state and signs of endothelial lesion in plasma of patients with inflammatory bowel disease. Dig Dis Sci 40:1883–1889, 1995

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Kruschewski MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruschewski, M., Anderson, T., Buhr, H.J. et al. Selective COX-2 Inhibition Reduces Leukocyte Sticking and Improves the Microcirculation in TNBS Colitis. Dig Dis Sci 51, 662–670 (2006). https://doi.org/10.1007/s10620-006-3189-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10620-006-3189-9

Key Words

Navigation