Skip to main content

Advertisement

Log in

The effect of SCF and ouabain on small intestinal motility dysfunction induced by gastric cancer peritoneal metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

The interstitial cells of Cajal (ICCs) play an important role in maintaining the normal function of gastrointestinal dynamics. In our previous study, we reported that, in advanced gastric cancer, the frequency of bowel movement is always reduced, due in part to the decreased number of ICCs. To investigate the impact of ICCs in gastric cancer, we established a mouse model of gastric cancer peritoneal metastasis using SGC-7901 gastric adenocarcinoma cells and their supernatant. Then, stem cell factor (SCF) and ouabain were used as therapeutic agents to improve gut dynamics. Our data showed that, compared with the normal mice, treatment with SGC-7901 cells and their supernatant led to a significant reduction of the muscle layer thickness, a decreased number of ICCs, broadened gaps between ICCs and surrounding cells, degeneration and necrosis of smooth muscle cells (SMCs), and infiltration of inflammatory cells. In contrast to SGC-7901 cell and supernatant treatment, SCF intervention caused mild submucosal edema and mitochondrial proliferation in the ICCs and SMCs. Additionally, ouabain treatment led to inflammatory cells infiltration into the submucosa and a decreased volume of ICCs. In conclusion, our data illustrated that, under the condition of gastric cancer peritoneal metastasis, the dysfunction of intestinal peristalsis may be related to pathological changes in ICCs. Moreover, we demonstrated that SCF treatment may help to improve intestinal dynamics by regulating the number and function of ICCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ICC:

Interstitial cells of Cajal

SMC:

Smooth muscle cells

SCF:

Stem cell factor

GI:

Gastrointestinal

SID:

Stomach–intestine dyskinesis

VIP:

Vasoactive intestinal peptide

CX43:

Connexin 43

NOS1:

NO synthase-1

NKA:

Na+-K+-ATPase

ENS:

Enteric nervous system

References

  1. Siegel R, Naishadham D, Jemal A (2013) Cancer statistics, 2013. CA Cancer J Clin 63(1):11–30

    Article  PubMed  Google Scholar 

  2. Lu Z et al (2010) Intraperitoneal therapy for peritoneal cancer. Future Oncol 6(10):1625–1641

    Article  PubMed Central  PubMed  Google Scholar 

  3. Zheng H et al (2011) Is gastrointestinal dysfunction induced by gastric cancer peritoneal metastasis relevant to impairment of interstitial cells of Cajal? Clin Exp Metastasis 28(3):291–299

    Article  PubMed  Google Scholar 

  4. Faussone-Pellegrini MS (1992) Histogenesis, structure and relationships of interstitial cells of Cajal (ICC): from morphology to functional interpretation. Eur J Morphol 30(2):137–148

    CAS  PubMed  Google Scholar 

  5. Lee JC et al (1999) Generation of slow waves in membrane potential is an intrinsic property of interstitial cells of Cajal. Am J Physiol 277(2 Pt 1):G409–G423

    CAS  PubMed  Google Scholar 

  6. Sanders KM et al (2000) A novel pacemaker mechanism drives gastrointestinal rhythmicity. News Physiol Sci 15:291–298

    CAS  PubMed  Google Scholar 

  7. Du P et al (2011) A preliminary model of gastrointestinal electromechanical coupling. IEEE Trans Biomed Eng 58(12):3491–3495

    Article  PubMed Central  PubMed  Google Scholar 

  8. Mostafa RM, Moustafa YM, Hamdy H (2010) Interstitial cells of Cajal, the Maestro in health and disease. World J Gastroenterol 16(26):3239–3248

    Article  PubMed Central  PubMed  Google Scholar 

  9. Ordog T, Ward SM, Sanders KM (1999) Interstitial cells of Cajal generate electrical slow waves in the murine stomach. J Physiol 518(Pt 1):257–269

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Tomita T, Hata T (2000) Effects of removal of Na(+) and Cl(−) on spontaneous electrical activity, slow wave, in the circular muscle of the guinea-pig gastric antrum. Jpn J Physiol 50(5):469–477

    Article  CAS  PubMed  Google Scholar 

  11. Habib S, Ali A (2011) Biochemistry of nitric oxide. Indian J Clin Biochem 26(1):3–17

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Chen Y et al (2011) Visualization of the interstitial cells of Cajal (ICC) network in mice. J Vis Exp. doi:10.379/2802

    Google Scholar 

  13. Yun HY et al (2010) Regional distribution of interstitial cells of Cajal (ICC) in human stomach. Korean J Physiol Pharmacol 14(5):317–324

    Article  PubMed Central  PubMed  Google Scholar 

  14. Bernex F et al (1996) Spatial and temporal patterns of c-kit-expressing cells in WlacZ/+ and WlacZ/WlacZ mouse embryos. Development 122(10):3023–3033

    CAS  PubMed  Google Scholar 

  15. Wu JJ, Rothman TP, Gershon MD (2000) Development of the interstitial cell of Cajal: origin, kit dependence and neuronal and nonneuronal sources of kit ligand. J Neurosci Res 59(3):384–401

    Article  CAS  PubMed  Google Scholar 

  16. Sanders KM, Ward SM (2006) Interstitial cells of Cajal: a new perspective on smooth muscle function. J Physiol 576(Pt 3):721–726

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sharma B, Singh N (2013) Pharmacological inhibition of inducible nitric oxide synthase (iNOS) and nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, convalesce behavior and biochemistry of hypertension induced vascular dementia in rats. Pharmacol Biochem Behav 103(4):821–830

    Article  CAS  PubMed  Google Scholar 

  18. Forstermann U, Sessa WC (2012) Nitric oxide synthases: regulation and function. Eur Heart J 33(7): 829–837, 837a–837d

  19. Lowry JL et al (2013) Endothelial nitric-oxide synthase activation generates an inducible nitric-oxide synthase-like output of nitric oxide in inflamed endothelium. J Biol Chem 288(6):4174–4193

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Voice JK et al (2003) Roles of vasoactive intestinal peptide (VIP) in the expression of different immune phenotypes by wild-type mice and T cell-targeted type II VIP receptor transgenic mice. J Immunol 170(1):308–314

    Article  CAS  PubMed  Google Scholar 

  21. Li JM et al (2011) Absence of vasoactive intestinal peptide expression in hematopoietic cells enhances Th1 polarization and antiviral immunity in mice. J Immunol 187(2):1057–1065

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Pauls S et al (2014) Differential contributions of intra-cellular and inter-cellular mechanisms to the spatial and temporal architecture of the suprachiasmatic nucleus circadian circuitry in wild-type, cryptochrome-null and vasoactive intestinal peptide receptor 2-null mutant mice. Eur J Neurosci 40(3):2528–2540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Zhang MQ et al (2014) Cigarette smoking promotes inflammation in patients with COPD by affecting the polarization and survival of Th/Tregs through up-regulation of muscarinic receptor 3 and 5 expression. PLoS One 9(11):e112350

    Article  PubMed Central  PubMed  Google Scholar 

  24. Santini E, Sepulveda-Orengo M, Porter JT (2012) Muscarinic receptors modulate the intrinsic excitability of infralimbic neurons and consolidation of fear extinction. Neuropsychopharmacology 37(9):2047–2056

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Stahlhut M et al (2006) The antiarrhythmic peptide rotigaptide (ZP123) increases connexin 43 protein expression in neonatal rat ventricular cardiomyocytes. Cell Commun Adhes 13(1–2):21–27

    Article  CAS  PubMed  Google Scholar 

  26. Chew SS et al (2010) Role of connexin43 in central nervous system injury. Exp Neurol 225(2):250–261

    Article  CAS  PubMed  Google Scholar 

  27. Cai ZX, Li Y, Qi QH (2010) Morphological changes in interstitial cells of Cajal in the deep muscular plexus and enteric motor neurons of the intestine in rats with multiple organ dysfunction syndrome. Neural Regn Res 5(8):635–636

    Google Scholar 

  28. Qi QH et al (2010) Morphological changes in network of enteric nerve-interstitial cells of Cajal-smooth muscle cells in rats with multiple organ dysfunction syndrome and therapeutic effects of Dachengqi decoction. Chin J Integr Med 16(5):422–429

    Article  PubMed  Google Scholar 

  29. Li K et al (2013) Connexin43 hemichannel-mediated regulation of connexin43. PLoS One 8(2):e58057

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Cousins HM et al (2003) Electrical coupling between the myenteric interstitial cells of Cajal and adjacent muscle layers in the guinea-pig gastric antrum. J Physiol 550(Pt 3):829–844

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Haas M, Askari A, Xie Z (2000) Involvement of Src and epidermal growth factor receptor in the signal-transducing function of Na +/K + -ATPase. J Biol Chem 275(36):27832–27837

    CAS  PubMed  Google Scholar 

  32. Liu L et al (2004) Role of caveolae in ouabain-induced proliferation of cultured vascular smooth muscle cells of the synthetic phenotype. Am J Physiol Heart Circ Physiol 287(5):H2173–H2182

    Article  CAS  PubMed  Google Scholar 

  33. Xie Z, Askari A (2002) Na(+)/K(+)-ATPase as a signal transducer. Eur J Biochem 269(10):2434–2439

    Article  CAS  PubMed  Google Scholar 

  34. Dostanic I et al (2004) The alpha 1 isoform of Na, K-ATPase regulates cardiac contractility and functionally interacts and co-localizes with the Na/Ca exchanger in heart. J Biol Chem 279(52):54053–54061

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Heilongjiang Provincial Science and Technology Innovation Team in Higher Education Institutes for Infection and Immunity, Harbin Medical University, Harbin 150081, China.

Funding

This work was supported by the National Natural Science Fund (No. 81372611), the National Natural Science Youth Fund (No. 81301750) and the key project of Heilongjiang Province Educational Administration (No. 12521z017).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaoming Jin or Ge Lou.

Additional information

Dan Kong and Jing Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kong, D., Li, J., Zhao, B. et al. The effect of SCF and ouabain on small intestinal motility dysfunction induced by gastric cancer peritoneal metastasis. Clin Exp Metastasis 32, 267–277 (2015). https://doi.org/10.1007/s10585-015-9702-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-015-9702-9

Keywords

Navigation