Skip to main content

Advertisement

Log in

p66Shc—a longevity redox protein in human prostate cancer progression and metastasis

p66Shc in cancer progression and metastasis

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

p66Shc, a 66 kDa proto-oncogene Src homologous-collagen homologue (Shc) adaptor protein, is classically known in mediating receptor tyrosine kinase signaling and recently identified as a sensor to oxidative stress-induced apoptosis and as a longevity protein in mammals. The expression of p66Shc is decreased in mice and increased in human fibroblasts upon aging and in aging-related diseases, including prostate cancer. p66Shc protein level correlates with the proliferation of several carcinoma cells and can be regulated by steroid hormones. Recent advances point that p66Shc protein plays a role in mediating cross-talk between steroid hormones and redox signals by serving as a common convergence point in signaling pathways on cell proliferation and apoptosis. This article first reviews the unique function of p66Shc protein in regulating oxidative stress-induced apoptosis. Subsequently, we discuss its novel role in androgen-regulated prostate cancer cell proliferation and metastasis and the mechanism by which it mediates androgen action via the redox signaling pathway. The data together indicate that p66Shc might be a useful biomarker for the prognosis of prostate cancer and serve as an effective target for its cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Guo, M., & Hay, B. A. (1999). Cell proliferation and apoptosis. Current Opinion in Cell Biology, 11, 745–752.

    Article  PubMed  CAS  Google Scholar 

  2. Evan, G. I., & Vousden, K. H. (2001). Proliferation, cell cycle and apoptosis in cancer. Nature, 411, 342–348.

    Article  PubMed  CAS  Google Scholar 

  3. Rathmell, J. C., & Thompson, C. B. (1999). The central effectors of cell death in the immune system. Annual Review of Immunology, 17, 781–828.

    Article  PubMed  CAS  Google Scholar 

  4. Ginaldi, L., De Martinis, M., D'Ostilio, A., Marini, L., Loreto, M. F., Corsi, M. P., et al. (2000). Cell proliferation and apoptosis in the immune system in the elderly. Immunological Research, 21, 31–38.

    Article  CAS  Google Scholar 

  5. Gross, A., McDonnell, J. M., & Korsmeyer, S. J. (1999). BCL-2 family members and the mitochondria in apoptosis. Genes and Development, 13, 1899–1911.

    Article  PubMed  CAS  Google Scholar 

  6. Budd, R. C. (2002). Death receptors couple to both cell proliferation and apoptosis. Journal of Clinical Investigation, 109, 437–441.

    PubMed  CAS  Google Scholar 

  7. Pelicci, G., Lanfrancone, L., Grignani, F., McGlade, J., Cavallo, F., Forni, G., et al. (1992). A novel transforming protein [SHC] with an SH2 domain is implicated in mitogenic signal transduction. Cell, 70, 93–104.

    Article  PubMed  CAS  Google Scholar 

  8. Migliaccio, E., Mele, S., Salcini, A. E., Pelicci, G., Lai, K. M., Superti-Furga, G., et al. (1997). Opposite effects of the p52Shc/p46Shc and p66Shc splicing isoforms on the EGF receptor- MAP kinase-fos signaling pathway. The EMBO Journal, 16, 706–716.

    Article  PubMed  CAS  Google Scholar 

  9. Ravichandran, K. S. (2001). Signaling via Shc family adapter proteins. Oncogene, 20, 6322–6330.

    Article  PubMed  CAS  Google Scholar 

  10. Lee, M. S., Igawa, T., Chen, S. J., Van Bemmel, D., Lin, J. S., Lin, F. F., et al. (2004). p66Shc protein is upregulated by steroid hormones in hormone-sensitive cancer cells and in primary prostate carcinomas. International Journal of Cancer, 108, 672–678.

    Article  CAS  Google Scholar 

  11. Migliaccio, E., Giorgio, M., & Pelicci, P. G. (2006). Apoptosis and aging: role of p66Shc redox protein. Antioxidant and Redox Signaling, 8, 600–608.

    Article  CAS  Google Scholar 

  12. Henderson, B. E., & Feigelson, H. S. (2000). Hormonal carcinogenesis. Carcinogenesis, 21, 427–433.

    Article  PubMed  CAS  Google Scholar 

  13. Meng, T. C., Lee, M. S., & Lin, M. F. (2000). Interaction between protein tyrosine phosphatase and protein tyrosine kinase is involved in androgen-promoted growth of human prostate cancer cells. Oncogene, 19, 2664–2677.

    Article  PubMed  CAS  Google Scholar 

  14. Grossmann, M. E., Huang, H., & Tindall, D. J. (2001). Androgen receptor signaling in androgen-refractory prostate cancer. Journal of the National Cancer Institute, 93, 1687–1697.

    Article  PubMed  CAS  Google Scholar 

  15. Kraus, S., Gioeli, D., Vomastek, T., Gordon, V., & Weber, M. J. (2006). Receptor for activated C kinase 1 [RACK1] and Src regulate the tyrosine phosphorylation and function of the androgen receptor. Cancer Research, 66, 11047–11054.

    Article  PubMed  CAS  Google Scholar 

  16. Guo, Z., Dai, B., Jiang, T., Xu, K., Xie, Y., & Kim, O. (2006). Regulation of androgen receptor activity by tyrosine Phosphorylation. Cancer Cell, 10, 309–319.

    Article  PubMed  CAS  Google Scholar 

  17. Weigel, N. L., & Moore, N. L. (2007). Kinases and protein phosphorylation as regulators of steroid hormone action. Nuclear Receptor Signaling, 5, e005.

    PubMed  Google Scholar 

  18. Dickson, R. B., & Lippman, M. E. (1987). Estrogenic regulation of growth and polypeptide growth factor secretion in human breast carcinoma. Endocrine Reviews, 8, 29–43.

    Article  PubMed  CAS  Google Scholar 

  19. Dabrosin, C., Ollinger, K., Ungerstedt, U., & Hammar, M. (1997). Variability of glutathione levels in normal breast tissue and subcutaneous fat during the menstrual cycle: an in vivo study with microdialysis technique. Journal of Clinical Endocrinology and Metabolism, 82, 1382–1384.

    Article  PubMed  CAS  Google Scholar 

  20. Devanesan, P., Santen, R. J., Bocchinfuso, W. P., Korach, K. S., Rogan, E. G., & Cavalieri, E. (2001). Catechol estrogen metabolites and conjugates in mammary tumors and hyperplastic tissue from estrogen receptor-alpha knock-out [ERKO]/Wnt-1 mice: Implications for initiation of mammary tumors. Carcinogenesis, 22, 1573–1576.

    Article  PubMed  CAS  Google Scholar 

  21. Engebraaten, O., Bjerkvig, R., Pedersen, P. H., & Laerum, O. D. (1993). Effects of EGF, bFGF, NGF, and PDGF [bb] on cell proliferative, migratory, and invasive capacities of human brain-tumour biopsies in vitro. International Journal of Cancer, 53, 209–214.

    Article  CAS  Google Scholar 

  22. Hamada, J., Nagayasu, H., Takayama, M., Kawano, T., Hosokawa, M., & Takeichi, N. (1995). Enhanced effect of epidermal growth factor on pulmonary metastasis and in vitro invasion of rat mammary carcinoma cells. Cancer Letters, 89, 161–167.

    Article  PubMed  CAS  Google Scholar 

  23. Mignatti, P., Morimoto, T., & Rifkin, D. B. (1991). Basic fibroblast growth factor released by single, isolated cells stimulates their migration in an autocrine manner. Proceedings of National Academy of Sciences, 88, 11007–11011.

    Article  CAS  Google Scholar 

  24. Taylor, W. R., Greenberg, A. H., Turley, E. A., & Wright, J. A. (1993). Cell motility, invasion, and malignancy induced by overexpression of K-FGF or bFGF. Experimental cell research, 204, 295–301.

    Article  PubMed  CAS  Google Scholar 

  25. Choudhury, G. G., Karamitsos, C., Hernandez, J., Gentilini, A., Bardgette, J., & Abboud, H. E. (1997). PI-3-kinase and MAPK regulate mesangial cell proliferation and migration in response to PDGF. Amarican Journal of Physiology, 273, F931–F938.

    CAS  Google Scholar 

  26. Stracke, M. L., Engel, J. D., Wilson, L. W., Rechler, M. M., Liotta, L. A., & Schiffmann, E. (1989). The type I insulin-like growth factor receptor is a motility receptor in human melanoma cells. Journal of Biological Chemistry, 264, 21544–21549.

    PubMed  CAS  Google Scholar 

  27. Sachs, M., Weidner, K. M., Brinkmann, V., Walther, I., Obermeier, A., Ullrich, A., et al. (1996). Motogenic and morphogenic activity of epithelial receptor tyrosine kinases. The Journal of Cell Biology, 133, 1095–1107.

    Article  PubMed  CAS  Google Scholar 

  28. Pelicci, G., Giordano, S., Zhen, Z., Salcini, A. E., Lanfrancone, L., Bardelli, A., et al. (1995). The motogenic and mitogenic responses to HGF are amplified by the Shc adaptor protein. Oncogene, 10, 1631–1638.

    PubMed  CAS  Google Scholar 

  29. Ratner, S., Patrick, P., & Bora, G. (1992). Lymphocyte development of adherence and motility in extracellular matrix during IL-2 stimulation. The Journal of Immunology, 149, 681–688.

    PubMed  CAS  Google Scholar 

  30. Migliaccio, E., Giorgio, M., Mele, S., Pelicci, G., Reboldi, P., Pandolfi, P. P., et al. (1999). The p66shc adaptor protein controls oxidative stress response and life span in mammals. Nature, 402, 309–313.

    Article  PubMed  CAS  Google Scholar 

  31. Orr, W. C., & Sohal, R. S. (1994). Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science, 263, 1128–1130.

    Article  PubMed  CAS  Google Scholar 

  32. Taub, J., Lau, J. F., Ma, C., Hahn, J. H., Hoque, R., Rothblatt, J., et al. (1999). A cytosolic catalase is needed to extend adult lifespan in C. elegans daf-C and clk-1 mutants. Nature, 399, 162–166.

    Article  PubMed  CAS  Google Scholar 

  33. Sagi, O., Wolfson, M., Utko, N., Muradian, K., & Fraifeld, V. (2005). p66ShcA and ageing: modulation by longevity-promoting agent aurintricarboxylic acid. Mechanisms of Ageing and Development, 126, 249–254.

    Article  PubMed  CAS  Google Scholar 

  34. Jackson, J. G., Yoneda, T., Clark, G. M., & Yee, D. (2000). Elevated levels of p66 Shc are found in breast cancer cell lines and primary tumors with high metastatic potential. Clinical Cancer Research, 6, 1135–1139.

    PubMed  CAS  Google Scholar 

  35. Luzi, L., Confalonieri, S., Di Fiore, P. P., & Pelicci, P. G. (2000). Evolution of Shc functions from nematode to human. Current Opinion in Genetics and Development, 10, 668–674.

    Article  PubMed  CAS  Google Scholar 

  36. Davol, P. A., Bagdasaryan, R., Elfenbein, G. J., Maizel, A. L., & Frackelton, A. R., Jr. (2003). Shc proteins are strong, independent prognostic markers for both node negative and node positive primary breast cancer. Cancer Research, 63, 6772–6783.

    PubMed  CAS  Google Scholar 

  37. De, S., Razorenova, O., McCabe, N. P., O'Toole, T., Qin, J., & Byzova, T. V. (2005). VEGF-integrin interplay controls tumor growth and vascularization. Proceedings of the National Academy of Sciences, 102, 7589–7594.

    Article  CAS  Google Scholar 

  38. Grossman, S. R., Lyle, S., Resnick, M. B., Sabo, E., Lis, R. T., Rosinha, E., et al. (2007). p66 Shc tumor levels show a strong prognostic correlation with disease outcome in stage IIA colon cancer. Clinical Cancer Research, 13, 5798–5804.

    Article  PubMed  CAS  Google Scholar 

  39. Biscardi, J. S., Belsches, A. P., & Parsons, S. J. (1998). Characterization of human epidermal growth factor receptor and c-Src interactions in human breast tumor cells. Molecular Carcinoenesis, 21, 261–272.

    Article  CAS  Google Scholar 

  40. Stevenson, L. E., & Frackelton, A. R., Jr. (1998). Constitutively tyrosine phosphorylated p52 Shc in breast cancer cells: correlation with ErbB2 and p66 Shc expression. Breast Cancer Research and Treatment, 49, 119–128.

    Article  PubMed  CAS  Google Scholar 

  41. Veeramani, S., Igawa, T., Yuan, T. C., Lin, F. F., Lee, M. S., Lin, J. S., et al. (2005). Expression of p66 [Shc] protein correlates with proliferation of human prostate cancer cells. Oncogene, 24, 7203–7212.

    Article  PubMed  CAS  Google Scholar 

  42. Veeramani, S., Yuan, T. C., Lin, F. F., & Lin, M. F. (2008). Mitochondrial redox signaling by p66 Shc is involved in regulating androgenic growth stimulation of human prostate cancer cells. Oncogene, 27, 5057–5068.

    Article  PubMed  CAS  Google Scholar 

  43. Ventura, A., Luzi, L., Pacini, S., Baldari, C. T., & Pelicci, P. G. (2002). The p66 Shc longevity gene is silenced through epigenetic modifications of an alternative promoter. Journal of Biological Chemistry, 277, 22370–22376.

    Article  PubMed  CAS  Google Scholar 

  44. Pawson, T., & Scott, J. D. (1997). Signaling through scaffold, anchoring, and adaptor proteins. Science, 278, 2075–2080.

    Article  PubMed  CAS  Google Scholar 

  45. Yoshida, S., Masaki, T., Feng, H., Yuji, J., Miyauchi, Y., Funaki, T., et al. (2004). Enhanced expression of adaptor molecule p46 Shc in nuclei of hepatocellular carcinoma cells: study of LEC rats. International Journal of Oncology, 25, 1089–1096.

    PubMed  CAS  Google Scholar 

  46. Giorgio, M., Migliaccio, E., Orsini, F., Paolucci, D., Moroni, M., Contursi, C., et al. (2005). Electron transfer between cytochrome c and p66 Shc generates reactive oxygen species that trigger mitochondrial apoptosis. Cell, 122, 221–233.

    Article  PubMed  CAS  Google Scholar 

  47. Pellegrini, M., Pacini, S., & Baldari, C. T. (2005). p66SHC: the apoptotic side of Shc proteins. Apoptosis, 10, 13–18.

    Article  PubMed  CAS  Google Scholar 

  48. Xie, Y., & Hung, M. C. (1996). p66Shc isoform down-regulated and not required for HER-2/neu signaling pathway in human breast cancer cell lines with HER-2/neu overexpression. Biochemical and Biophysical Research Communications, 221, 140–145.

    Article  PubMed  CAS  Google Scholar 

  49. Pacini, S., Pellegrini, M., Migliaccio, E., Patrussi, L., Ulivieri, C., Ventura, A., et al. (2004). p66SHC promotes apoptosis and antagonizes mitogenic signaling in T cells. Molecular Cell Biology, 24, 1747–1757.

    Article  CAS  Google Scholar 

  50. Le, S., Connors, T. J., & Maroney, A. C. (2001). c-Jun N-terminal kinase specifically phosphorylates p66ShcA at serine 36 in response to ultraviolet irradiation. Journal of Biological Chemistry, 276, 48332–48336.

    PubMed  CAS  Google Scholar 

  51. Kao, A. W., Waters, S. B., Okada, S., & Pessin, J. E. (1997). Insulin stimulates the phosphorylation of the 66- and 52-kilodalton Shc isoforms by distinct pathways. Endocrinology, 138, 2474–2480.

    Article  PubMed  CAS  Google Scholar 

  52. Yang, C. P., & Horwitz, S. B. (2000). Taxol mediates serine phosphorylation of the 66-kDa Shc isoform. Cancer Research, 60, 5171–5178.

    PubMed  CAS  Google Scholar 

  53. Okada, N., Wada, K., Goldsmith, B. A., & Koizumi, S. (1997). The 66-kDa Shc isoform is a negative regulator of the epidermal growth factor-stimulated mitogen- activated protein kinase pathway. Journal of Biological Chemistry, 272, 28042–28049.

    Article  PubMed  CAS  Google Scholar 

  54. Khanday, F. A., Yamamori, T., Mattagajasingh, I., Zhang, Z., Bugayenko, A., Naqvi, A., et al. (2006). Rac1 leads to phosphorylation-dependent increase in stability of the p66shc adaptor protein: role in Rac1-induced oxidative stress. Molecular Biology of the Cell, 17, 122–129.

    Article  PubMed  CAS  Google Scholar 

  55. Pinton, P., Rimessi, A., Marchi, S., Orsini, F., Migliaccio, E., Giorgio, M., et al. (2007). Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science, 315, 659–663.

    Article  PubMed  CAS  Google Scholar 

  56. Geisel, J., Schorr, H., Heine, G. H., Bodis, M., Hübner, U., Knapp, J. P., et al. (2007). Decreased p66Shc promoter methylation in patients with end-stage renal disease. Clinical Chemistry Laboratory Medicine, 45, 1764–1770.

    Article  CAS  Google Scholar 

  57. Richardson, B. C. (2002). Role of DNA methylation in the regulation of cell function: autoimmunity, aging and cancer. The Journal of Nutrition, 132, 2401S–2405S.

    PubMed  CAS  Google Scholar 

  58. Baylin, S. B., Herman, J. G., Graff, J. R., Vertino, P. M., & Issa, J. P. (1998). Alterations in DNA methylation: a fundamental aspect of neoplasia. Advances in Cancer Research., 72, 141–196.

    Article  PubMed  CAS  Google Scholar 

  59. Ahuja, N., & Issa, J. P. (2000). Aging, methylation and cancer. Histology and Histopathology, 15, 835–842.

    PubMed  CAS  Google Scholar 

  60. Ahuja, N., Li, Q., Mohan, A. L., Baylin, S. B., & Issa, J. P. (1998). Aging and DNA methylation in colorectal mucosa and cancer. Cancer Research, 58, 5489–5494.

    PubMed  CAS  Google Scholar 

  61. Issa, J. P., Ottaviano, Y. L., Celano, P., Hamilton, S. R., Davidson, N. E., & Baylin, S. B. (1994). Methylation of the oestrogen receptor CpG island links ageing and neoplasia in human colon. Nature Genetics, 7, 536–540.

    Article  PubMed  CAS  Google Scholar 

  62. Pandolfi, S., Bonafè, M., Di Tella, L., Tiberi, L., Salvioli, S., Monti, D., et al. (2005). p66[shc] is highly expressed in fibroblasts from centenarians. Mechanism of Ageing and Development, 126, 839–844.

    Article  CAS  Google Scholar 

  63. Mooijaart, S. P., van Heemst, D., Schreuder, J., van Gerwen, S., Beekman, M., Brandt, B. W., et al. (2004). Variation in the SHC1 gene and longevity in humans. Experimental Gerontology, 39, 263–268.

    Article  PubMed  CAS  Google Scholar 

  64. Natalicchio, A., Laviola, L., De Tullio, C., Renna, L. A., Montrone, C., Perrini, S., et al. (2004). Role of the p66Shc isoform in insulin-like growth factor I receptor signaling through MEK/Erk and regulation of actin cytoskeleton in rat myoblasts. Journal of Biological Chemistry, 279, 43900–43909.

    Article  PubMed  CAS  Google Scholar 

  65. Foschi, M., Franchi, F., Han, J., La Villa, G., & Sorokin, A. (2001). Endothelin-1 induces serine phosphorylation of the adaptor protein p66Shc and its association with 14-3-3 protein in glomerular mesangial cells. Journal of Biological Chemistry, 276, 26640–26647.

    Article  PubMed  CAS  Google Scholar 

  66. Faisal, A., el-Shemerly, M., Hess, D., & Nagamine, Y. (2002). Serine/threonine phosphorylation of ShcA. Regulation of protein-tyrosine phosphatase-pest binding and involvement in insulin signaling. Journal of Biological Chemistry, 277, 30144–30152.

    Article  PubMed  CAS  Google Scholar 

  67. Yang, C. P., & Horwitz, S. B. (2002). Distinct mechanisms of taxol-induced serine phosphorylation of the 66-kDa Shc isoform in A549 and RAW 264.7 cells. Biochimica et Biophysica Acta, 1590, 76–83.

    PubMed  CAS  Google Scholar 

  68. Arany, I., Faisal, A., Nagamine, Y., & Safirstein, R. L. (2008). p66shc inhibits pro-survival epidermal growth factor receptor/ERK signaling during severe oxidative stress in mouse renal proximal tubule cells. Journal of Biological Chemistry, 283, 6110–6117.

    Article  PubMed  CAS  Google Scholar 

  69. El-Shemerly, M. Y., Besser, D., Nagasawa, M., & Nagamine, Y. (1997). 12-O- Tetradecanoylphorbol-13-acetate activates the Ras/extracellular signal-regulated kinase [ERK] signaling pathway upstream of SOS involving serine phosphorylation of Shc in NIH3T3 cells. Journal of Biological Chemistry, 272, 30599–30602.

    Article  PubMed  CAS  Google Scholar 

  70. Holt, K. H., Kasson, B. G., & Pessin, J. E. (1996). Insulin stimulation of a MEK- dependent but ERK-independent SOS protein kinase. Molecular and Cellular Biology, 16, 577–583.

    PubMed  CAS  Google Scholar 

  71. Purdom, S., & Chen, Q. M. (2003). p66[Shc]: at the crossroad of oxidative stress and the genetics of aging. Trends in Molecular Medicine, 9, 206–210.

    Article  PubMed  CAS  Google Scholar 

  72. Chao, D. T., & Korsmeyer, S. J. (1998). BCL-2 family: regulators of cell death. Annual Review of Immunology, 16, 395–419.

    Article  PubMed  CAS  Google Scholar 

  73. Shichiri, M., Yokokura, M., Marumo, F., & Hirata, Y. (2000). Endothelin-1 inhibits apoptosis of vascular smooth muscle cells induced by nitric oxide and serum deprivation via MAP kinase pathway. Arteriosclerosis, Thrombosis, and Vascular Biology, 20, 989–997.

    PubMed  CAS  Google Scholar 

  74. Habib, T., Herrera, R., & Decker, S. J. (1994). Activators of protein kinase C stimulate association of Shc and the PEST tyrosine phosphatase. Journal of Biological Chemistry, 269, 25243–25246.

    PubMed  CAS  Google Scholar 

  75. Charest, A., Wagner, J., Jacob, S., McGlade, C. J., & Tremblay, M. L. (1996). Phosphotyrosine-independent binding of SHC to the NPLH sequence of murine protein-tyrosine phosphatase-PEST. Evidence for extended phosphotyrosine binding/phosphotyrosine interaction domain recognition specificity. Journal of Biological Chemistry, 271, 8424–8429.

    Article  PubMed  CAS  Google Scholar 

  76. Nemoto, S., & Finkel, T. (2002). Redox regulation of forkhead proteins through a p66shc-depedent signaling pathway. Science, 295, 2450–2452.

    Article  PubMed  CAS  Google Scholar 

  77. Trinei, M., Giorgio, M., Cicalese, A., Barozzi, S., Ventura, A., Migliaccio, E., et al. (2002). A p53-p66Shc signalling pathway controls intracellular redox status, levels of oxidation-damaged DNA and oxidative stress-induced apoptosis. Oncogene, 21, 3872–3878.

    Article  PubMed  CAS  Google Scholar 

  78. Napoli, C., Martin-Padura, I., de Nigris, F., Giorgio, M., Mansueto, G., Somma, P., et al. (2003). Deletion of the p66Shc longevity gene reduces systemic and tissue oxidative stress, vascular cell apoptosis, and early atherogenesis in mice fed a high-fat diet. Proceedings of the National Academy of Sciences of the United States of America, 100, 2112–2116.

    Article  PubMed  CAS  Google Scholar 

  79. Francia, P., delli Gatti, C., Bachschmid, M., Martin-Padura, I., Savoia, C., Migliaccio, E., et al. (2004). Deletion of p66shc gene protects against age-related endothelial dysfunction. Circulation, 110, 2889–2895.

    Article  PubMed  CAS  Google Scholar 

  80. Zaccagnini, G., Martelli, F., Fasanaro, P., Magenta, A., Gaetano, C., Di Carlo, A., et al. (2004). p66ShcA modulates tissue response to hindlimb ischemia. Circulation, 109, 2917–2923.

    Article  PubMed  Google Scholar 

  81. Graiani, G., Lagrasta, C., Migliaccio, E., Spillmann, F., Meloni, M., Madeddu, P., et al. (2005). Genetic deletion of the p66Shc adaptor protein protects from angiotensin II-induced myocardial damage. Hypertension, 46, 433–440.

    Article  PubMed  CAS  Google Scholar 

  82. Koch, O. R., Fusco, S., Ranieri, S. C., Maulucci, G., Palozza, P., Larocca, L. M., et al. (2008). Role of the life span determinant P66[shcA] in ethanol-induced liver damage. Laboratory Investigations, 88, 750–760.

    Article  CAS  Google Scholar 

  83. Sen, C. K., & Packer, L. (1996). Antioxidant and redox regulation of gene transcription. The FASEB Journal, 10, 709–720.

    PubMed  CAS  Google Scholar 

  84. Orsini, F., Migliaccio, E., Moroni, M., Contursi, C., Raker, V. A., Piccini, D., et al. (2004). The life span determinant p66Shc localizes to mitochondria where it associates with mitochondrial heat shock protein 70 and regulates trans-membrane potential. Journal of Biological Chemistry, 279, 25689–25695.

    Article  PubMed  CAS  Google Scholar 

  85. Smith, W. W., Norton, D. D., Gorospe, M., Jiang, H., Nemoto, S., Holbrook, N. J., et al. (2005). Phosphorylation of p66Shc and forkhead proteins mediates Aβ toxicity. The Journal of Cell Biology, 169, 331–339.

    Article  PubMed  CAS  Google Scholar 

  86. Stevenson, M. A., Pollock, S. S., Coleman, C. N., & Calderwood, S. K. (1994). X- irradiation, phorbol esters, and H2O2 stimulate mitogen-activated protein kinase activity in NIH-3T3 cells through the formation of reactive oxygen intermediates. Cancer Research, 54, 12–15.

    PubMed  CAS  Google Scholar 

  87. Polyak, K., Xia, Y., Zweier, J. L., Kinzler, K. W., & Vogelstein, B. (1997). A model for p53-induced apoptosis. Nature, 389, 300–305.

    Article  PubMed  CAS  Google Scholar 

  88. Li, P. F., Dietz, R., & von Harsdorf, R. (1999). p53 regulates mitochondrial membrane potential through reactive oxygen species and induces cytochrome c-independent apoptosis blocked by Bcl-2. The EMBO Journal, 18, 6027–6036.

    Article  PubMed  CAS  Google Scholar 

  89. Schuler, M., Bossy-Wetzel, E., Goldstein, J. C., Fitzgerald, P., & Green, D. R. (2000). p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release. Journal of Biological Chemistry, 275, 7337–7342.

    Article  PubMed  CAS  Google Scholar 

  90. Tiberi, L., Faisal, A., Rossi, M., Di Tella, L., Franceschi, C., & Salvioli, S. (2006). p66[Shc] gene has a pro-apoptotic role in human cell lines and it is activated by a p53-independent pathway. Biochemical and Biophysical Research Communications, 342, 503–508.

    Article  PubMed  CAS  Google Scholar 

  91. Favetta, L. A., St. John, E. J., King, W. A., & Betts, D. H. (2007). High levels of p66shc and intracellular ROS in permanently arrested early embryos. Free Radical Biology and Medicine, 42, 1201–1210.

    Article  PubMed  CAS  Google Scholar 

  92. Favetta, L. A., Robert, C., St. John, E. J., Betts, D. H., & King, W. A. (2004). p66shc, but not p53, is involved in early arrest of in vitro-produced bovine embryos. Molecular Human Reproduction, 10, 383–392.

    Article  PubMed  CAS  Google Scholar 

  93. Matwee, C., Betts, D. H., & King, W. A. (2000). Apoptosis in the early bovine embryo. Zygote, 8, 57–68.

    Article  PubMed  CAS  Google Scholar 

  94. Velez-Pardo, C., Morales, A. T., Del Rio, M. J., & Olivera-Angel, M. (2007). Endogenously generated hydrogen peroxide induces apoptosis via mitochondrial damage independent of NF-kappaB and p53 activation in bovine embryos. Theriogenology, 67, 1285–1296.

    Article  PubMed  CAS  Google Scholar 

  95. Betts, D. H., & Madan, P. (2008). Permanent embryo arrest: molecular and cellular concepts. Molecular Human Reproduction, 14, 445–453.

    Article  PubMed  CAS  Google Scholar 

  96. Tang, E. D., Nuñez, G., Barr, F. G., & Guan, K. L. (1999). Negative regulation of the forkhead transcription factor FKHR by Akt. Journal of Biological Chemistry, 274, 16741–16746.

    Article  PubMed  CAS  Google Scholar 

  97. Biggs, W. H., 3rd, Cavenee, W. K., & Arden, K. C. (2001). Identification and characterization of members of the FKHR [FOX O] subclass of winged-helix transcription factors in the mouse. Mammalian Genome, 12, 416–425.

    Article  PubMed  CAS  Google Scholar 

  98. Brunet, A., Bonni, A., Zigmond, M. J., Lin, M. Z., Juo, P., Hu, L. S., et al. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell, 96, 857–868.

    Article  PubMed  CAS  Google Scholar 

  99. Kops, G. J., Dansen, T. B., Polderman, P. E., Saarloos, I., Wirtz, K. W., Coffer, P. J., et al. (2002). Forkhead transcription factor FOXO3a protects quiescent cells from oxidative stress. Nature, 419, 316–321.

    Article  PubMed  CAS  Google Scholar 

  100. Dijkers, P. F., Medema, R. H., Lammers, J. W., Koenderman, L., & Coffer, P. J. (2000). Expression of the pro-apoptotic Bcl-2 family member Bim is regulated by the forkhead transcription factor FKHR-L1. Current Biology, 10, 1201–1204.

    Article  PubMed  CAS  Google Scholar 

  101. Ventura, A., Maccarana, M., Raker, V. A., & Pelicci, P. G. (2004). A cryptic targeting signal induces isoform-specific localization of p46Shc to mitochondria. Journal of Biological Chemistry, 279, 2299–2306.

    Article  PubMed  CAS  Google Scholar 

  102. Nemoto, S., Combs, C. A., French, S., Ahn, B. H., Fergusson, M. M., Balaban, R. S., et al. (2006). The mammalian longevity-associated gene product p66shc regulates mitochondrial metabolism. Journal of Biological Chemistry, 281, 10555–10560.

    Article  PubMed  CAS  Google Scholar 

  103. Rizzuto, R., Pinton, P., Carrington, W., Fay, F. S., Fogarty, K. E., Lifshitz, L. M., et al. (1998). Close contacts with the endoplasmic reticulum as determinants of mitochondrial Ca2+ responses. Science, 280, 1763–1766.

    Article  PubMed  CAS  Google Scholar 

  104. Pinton, P., Leo, S., Wieckowski, M. R., Di Benedetto, G., & Rizzuto, R. (2004). Long-term modulation of mitochondrial Ca2+ signals by protein kinase C isozymes. The Journal of Cell Biology, 165, 223–232.

    Article  PubMed  CAS  Google Scholar 

  105. Gopalakrishna, R., & Jaken, S. (2000). Protein kinase C signaling and oxidative stress. Free Radical Biology of Medicine, 28, 1349–1361.

    Article  CAS  Google Scholar 

  106. Pellegrini, M., Finetti, F., Petronilli, V., Ulivieri, C., Giusti, F., Lupetti, P., et al. (2007). p66SHC promotes T cell apoptosis by inducing mitochondrial dysfunction and impaired Ca2+ homeostasis. Cell Death and Differentiation, 14, 338–347.

    Article  PubMed  CAS  Google Scholar 

  107. Wulf, G., Finn, G., Suizu, F., & Lu, K. P. (2005). Phosphorylation-specific prolyl isomerization: is there an underlying theme? Nature Cell Biology, 7, 435–441.

    Article  PubMed  CAS  Google Scholar 

  108. Orsini, F., Moroni, M., Contursi, C., Yano, M., Pelicci, P., Giorgio, M., et al. (2006). Regulatory effects of the mitochondrial energetic status on mitochondrial p66Shc. Biological Chemistry, 387, 1405–1410.

    Article  PubMed  CAS  Google Scholar 

  109. Gertz, M., Fischer, F., Wolters, D., & Steegborn, C. (2008). Activation of the lifespan regulator p66Shc through reversible disulfide bond formation. Proceedings of the National Academic of Sciences of the United States of America, 105, 5705–5709.

    Article  Google Scholar 

  110. Sastre, J., Pallardó, F. V., & Viña, J. (2003). The role of mitochondrial oxidative stress in aging. Free Radical Biology of Medicine, 35, 1–8.

    Article  CAS  Google Scholar 

  111. Ames, B. N., Shigenaga, M. K., & Hagen, T. M. (1993). Oxidants, antioxidants, and the degenerative diseases of aging. Proceedings of the National Academy of Sciences of the United States of America, 90, 7915–7922.

    Article  PubMed  CAS  Google Scholar 

  112. Lithgow, G. J., & Kirkwood, T. B. (1996). Mechanisms and evolution of aging. Science, 273, 80.

    Article  PubMed  CAS  Google Scholar 

  113. Helbock, H. J., Beckman, K. B., & Ames, B. N. (1999). 8-Hydroxydeoxyguanosine and 8-hydroxyguanine as biomarkers of oxidative DNA damage. Methods in Enzymology, 300, 156–166.

    Article  PubMed  CAS  Google Scholar 

  114. Favetta, L. A., Robert, C., King, W. A., & Betts, D. H. (2004). Expression profiles of p53 and p66shc during oxidative stress-induced senescence in fetal bovine fibroblasts. Experimental Cell Research, 299, 36–48.

    Article  PubMed  CAS  Google Scholar 

  115. Jiang, X., Edstrom, E., Altun, M., & Ulfhake, B. (2003). Differential regulation of Shc adaptor proteins in skeletal muscle, spinal cord and forebrain of aged rats with sensorimotor impairment. Aging Cell, 2, 47–57.

    Article  PubMed  Google Scholar 

  116. Klein, L. E., Freeze, B. S., Smith, A. B., 3rd, & Horwitz, S. B. (2005). The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cell senescence. Cell Cycle, 4, 501–507.

    PubMed  CAS  Google Scholar 

  117. Trinei, M., Berniakovich, I., Pelicci, P. G., & Giorgio, M. (2006). Mitochondrial DNA copy number is regulated by cellular proliferation: a role for Ras and p66[Shc]. Biochim Biophysics Acta, 1757, 624–630.

    Article  CAS  Google Scholar 

  118. Masuyama, M., Iida, R., Takatsuka, H., Yasuda, T., & Matsuki, T. (2005). The pregnane X receptor regulates gene expression in a ligand- and promoter-selective fashion. Molecular Endocrinology, 19, 1170–1180.

    Article  PubMed  CAS  Google Scholar 

  119. Pages, G., Lenormand, P., L'Allemain, G., Chambard, J. C., Meloche, S., & Pouyssegur, J. (1993). Mitogen-activated protein kinases p42mapk and p44mapk are required for fibroblast proliferation. Proceedings of National Academy of Sciences, 90, 8319–8323.

    Article  CAS  Google Scholar 

  120. Olson, M. F., Ashworth, A., & Hall, A. (1995). An essential role for Rho, Rac, and Cdc42 GTPases in cell cycle progression through G1. Science, 269, 1270–1272.

    Article  PubMed  CAS  Google Scholar 

  121. Anand-Apte, B., Zetter, B. R., Viswanathan, A., Qiu, R. G., Chen, J., Ruggieri, R., et al. (1997). Platelet-derived growth factor and fibronectin-stimulated migration are differentially regulated by the Rac and extracellular signal-regulated kinase pathways. Journal of Biological Chemistry, 272, 30688–30692.

    Article  PubMed  CAS  Google Scholar 

  122. Klemke, R. L., Cai, S., Giannini, A. L., Gallagher, P. J., de Lanerolle, P., & Cheresh, D. A. (1997). Regulation of cell motility by mitogen-activated protein kinase. The Journal of Cell Biology, 137, 481–492.

    Article  PubMed  CAS  Google Scholar 

  123. Klemke, R. L., Yebra, M., Bayna, E. M., & Cheresh, D. A. (1994). Receptor tyrosine kinase signaling required for integrin alpha v beta 5-directed cell motility but not adhesion on vitronectin. The Journal of Cell Biology, 127, 859–866.

    Article  PubMed  CAS  Google Scholar 

  124. Huttenlocher, A., Sandborg, R. R., & Horwitz, A. F. (1995). Adhesion in cell migration. Current Opinion in Cell Biology, 7, 697–706.

    Article  PubMed  CAS  Google Scholar 

  125. Lauffenburger, D. A., & Horwitz, A. F. (1996). Cell migration: a physically integrated molecular process. Cell, 84, 359–369.

    Article  PubMed  CAS  Google Scholar 

  126. Abdollahi, A., Gruver, B. N., Patriotis, C., & Hamilton, T. C. (2003). Identification of epidermal growth factor-responsive genes in normal rat ovarian surface epithelial cells. Biochemical and Biophysical Research Communications, 18, 188–197.

    Article  CAS  Google Scholar 

  127. Park, Y. J., Kim, T. Y., Lee, S. H., Kim, H., Kim, S. W., Shong, M., et al. (2005). p66shc expression in proliferating thyroid cells is regulated by thyrotropin receptor signaling. Endocrinology, 146, 2473–2480.

    Article  PubMed  CAS  Google Scholar 

  128. Ruoslahti, E., & Reed, J. C. (1994). Anchorage dependence, integrins, and apoptosis. Cell, 77, 477–478.

    Article  PubMed  CAS  Google Scholar 

  129. Hynes, R. O., Bader, B. L., & Hodivala-Dilke, K. (1999). Integrins in vascular development. Brazil Journal of Medicinal Biological Research, 32, 501–510.

    CAS  Google Scholar 

  130. Cooper, C. R., Chay, C. H., & Pienta, K. J. (2002). The role of alpha[v]beta[3] in prostate cancer progression. Neoplasia, 4, 191–194.

    Article  PubMed  CAS  Google Scholar 

  131. Zheng, D. Q., Woodard, A. S., Fornaro, M., Tallini, G., & Languino, L. R. (1999). Prostatic carcinoma cell migration via alpha[v]beta3 integrin is modulated by a focal adhesion kinase pathway. Cancer Research, 59, 1655–1664.

    PubMed  CAS  Google Scholar 

  132. Northey, J. J., Chmielecki, J., Ngan, E., Russo, C., Annis, M. G., Muller, W. J., et al. (2008). Signaling through ShcA is required for transforming growth factor beta- and Neu/ErbB-2-induced breast cancer cell motility and invasion. Molecular and Cellular Biology, 28, 3162–3176.

    Article  PubMed  CAS  Google Scholar 

  133. Ursini-Siegel, J., & Muller, W. J. (2008). The ShcA adaptor protein is a critical regulator of breast cancer progression. Cell Cycle, 7, 1936–1943.

    PubMed  CAS  Google Scholar 

  134. Sundaresan, M., Yu, Z. X., Ferrans, V. J., Sulciner, D. J., Gutkind, J. S., Irani, K., et al. (1996). Regulation of reactive-oxygen-species generation in fibroblasts by Rac1. Biochemical Journal, 318, 379–382.

    PubMed  CAS  Google Scholar 

  135. Liu, S. L., Lin, X., Shi, D. Y., Cheng, J., Wu, C. Q., & Zhang, Y. D. (2002). Reactive oxygen species stimulated human hepatoma cell proliferation via cross-talk between PI3-K/PKB and JNK signaling pathways. Archives of Biochemistry and Biophysics, 406, 173–182.

    Article  PubMed  CAS  Google Scholar 

  136. Finkel, T., & Holbrook, N. J. (2000). Oxidants, oxidative stress and the biology of ageing. Nature, 9, 239–247.

    Article  CAS  Google Scholar 

  137. Lou, Y. W., Chen, Y. Y., Hsu, S. F., Chen, R. K., Lee, C. L., Khoo, K. H., et al. (2008). Redox regulation of the protein tyrosine phosphatase PTP1B in cancer cells. FEBS Journal, 275, 69–88.

    PubMed  CAS  Google Scholar 

  138. Lin, M. F., & Meng, T. C. (1996). Tyrosine phosphorylation of a 185 kDa phosphoprotein [pp 185] inversely correlates with the cellular activity of human prostatic acid phosphatase. Biochemical and Biophysical Research Communications, 226, 206–213.

    Article  PubMed  CAS  Google Scholar 

  139. Lin, M. F., Lee, M. S., Zhou, X. W., Andressen, J. C., Meng, T. C., & Johansson, S. L. (2001). Decreased expression of cellular prostatic acid phosphatase increases umorigenicity of human prostate cancer cells. The Journal of Urology, 166, 1943–1950.

    Article  PubMed  CAS  Google Scholar 

  140. Veeramani, S., Yuan, T. C., Chen, S. J., Lin, F. F., Petersen, J. E., Shaheduzzaman, S., et al. (2005). Cellular prostatic acid phosphatase: a protein tyrosine phosphatase involved in androgen-independent proliferation of prostate cancer. Endocr-Related Cancer, 12, 805–822.

    Article  CAS  Google Scholar 

  141. Lim, S. D., Sun, C., Lambeth, J. D., Marshall, F., Amin, M., Chung, L., et al. (2005). Increased Nox1 and hydrogen peroxide in prostate cancer. Prostate, 62, 200–207.

    Article  PubMed  CAS  Google Scholar 

  142. Khanday, F. A., Santhanam, L., Kasuno, K., Yamamori, T., Naqvi, A., Dericco, J., et al. (2006). Sos-mediated activation of rac1 by p66shc. The Journal of Cell Biology, 172, 817–822.

    Article  PubMed  CAS  Google Scholar 

  143. Knight-Krajewski, S., Welsh, C. F., Liu, Y., Lyons, L. S., Faysal, J. M., Yang, E. S., et al. (2004). Deregulation of the Rho GTPase, Rac1, suppresses cyclin-dependent kinase inhibitor p21[CIP1] levels in androgen-independent human prostate cancer cells. Oncogene, 23, 5513–5522.

    Article  PubMed  CAS  Google Scholar 

  144. Veeramani, S., & Lin, M. F. (2007). Role of reactive oxygen species in carcinogenesis. In R. Banarjee (Ed.), Redox biochemistry (pp. 212–218). New Jersey: Wiley.

    Google Scholar 

  145. Lippman, S. M., Klein, E. A., Goodman, P. J., Lucia, M. S., Thompson, I. M., Ford, L. G., et al. (2009). Effect of selenium and vitamin E on risk of prostate cancer and other cancers: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). The Journal of the American Medical Association, 301, 39–51.

    Article  CAS  Google Scholar 

  146. Sakai, H., Igawa, T., Saha, P. K., Nomata, K., Yushita, Y., Kanetake, H., et al. (1992). A case of prostatic carcinoma presenting as a metastatic orbital tumor. Hinyokika Kiyo. Acta Urologica Japonica [Kyoto], 38, 77–80.

    CAS  Google Scholar 

  147. Chu, T. M., & Lin, M. F. (1998). PSA and acid phosphatase in the diagnosis of prostate cancer. Journal of Clinical Ligand Assay, 21, 24–34.

    Google Scholar 

  148. Reif, A. E., Schlesinger, R. M., Fish, C. A., & Robinson, C. M. (1973). Acid phosphatase isozymes in cancer of the prostate. Cancer, 31, 689–699.

    Article  PubMed  CAS  Google Scholar 

  149. Foti, A. G., Cooper, J. F., Herschman, H., & Malvaez, R. R. (1977). Detection of prostatic cancer by solid-phase radioimmunoassay of serum prostatic acid phosphatase. New England Journal of Medicine, 297, 1357–1361.

    Article  PubMed  CAS  Google Scholar 

  150. Loor, R., Wang, M. C., Valenzuela, L., & Chu, T. M. (1981). Expression of prostatic acid phosphatase in human prostate cancer. Cancer Letters, 14, 63–69.

    Article  PubMed  CAS  Google Scholar 

  151. Pontes, J. E., Rose, N. R., Ercole, C., & Pierce, J. M., Jr. (1981). Immunofluorescence for prostatic acid phosphatase: clinical applications. The Journal of Urology, 126, 187–189.

    PubMed  CAS  Google Scholar 

  152. Solin, T., Kontturi, M., Pohlmann, R., & Vihko, P. (1990). Gene expression and prostate specificity of human prostatic acid phosphatase [PAP]: evaluation by RNA blot analyses. Biochimica et Biophysica Acta, 1048, 72–77.

    PubMed  CAS  Google Scholar 

  153. Sakai, H., Yogi, Y., Minami, Y., Yushita, Y., Kanetake, H., & Saito, Y. (1993). Prostate specific antigen and prostatic acid phosphatase immunoreactivity as prognostic indicators of advanced prostatic carcinoma. The Journal of Urology, 149, 1020–1023.

    PubMed  CAS  Google Scholar 

  154. Gioeli, D., Mandell, J. W., Petroni, G. R., Frierson, H. F., Jr., & Weber, M. J. (1999). Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Research, 59, 279–284.

    PubMed  CAS  Google Scholar 

  155. Price, D. T., Della Rocca, G., Guo, C., Ballo, M. S., Schwinn, D. A., & Luttrell, L. M. (1999). Activation of extracellular signal regulated kinase in human prostate cancer. The Journal of Urology, 162, 1537–1542.

    Article  PubMed  CAS  Google Scholar 

  156. Lee, M. S., Igawa, T., Yuan, T. C., Zhang, X. Q., Lin, F. F., & Lin, M. F. (2003). ErbB2 signaling is involved in regulating PSA secretion in androgen-independent human prostate cancer LNCaP C-81 cells. Oncogene, 22, 781–796.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported in part by National Cancer Institute, National Institutes of Health [R01 CA88184], Department of Defense [W81XWH-06-1-0070 and W81XWH-08-1-0459], Nebraska Research Initiative for Cancer Metastasis, and Nebraska Cancer and Smoking Disease Research Program LB 506 [2008-20 and 2010-18]. We thank Dr. Shouqiang Ouyang for reading, and Ms. Fen-Fen Lin for her tremendous contributions toward our studies on the functional role of p66Shc in carcinogenesis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming-Fong Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rajendran, M., Thomes, P., Zhang, L. et al. p66Shc—a longevity redox protein in human prostate cancer progression and metastasis. Cancer Metastasis Rev 29, 207–222 (2010). https://doi.org/10.1007/s10555-010-9213-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-010-9213-8

Keywords

Navigation