Skip to main content

Advertisement

Log in

4D flow vs. 2D cardiac MRI for the evaluation of pulmonary regurgitation and ventricular volume in repaired tetralogy of Fallot: a retrospective case control study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

Lengthy exams and breath-holding limit the use of pediatric cardiac MRI (CMR). 3D time-resolved flow MRI (4DF) is a free-breathing, single-sequence exam that obtains magnitude (anatomic) and phase contrast (PC) data. We compare the accuracy of gadobenate dimeglumine-enhanced 4DF on a 1.5 T magnet to 2D CMR in children with repaired tetralogy of Fallot (rTOF) to measure pulmonary net flow (PNF) as a reflection of pulmonary regurgitation, forward flow (FF) and ventricular volumetry. Thirty-four consecutive cases were included. 2D PCs were obtained at the valve level. Using 4DF, we measured PNF at the valve and at the main and branch pulmonary arteries. PNF measured at the valve by 4DF demonstrated the strongest correlation (r = 0.87, p < 0.001) and lowest mean difference (3.5 ± 9.4 mL/beat) to aortic net flow (ANF). Semilunar FF and stroke volume of the respective ventricle demonstrated moderate-strong correlation by 4DF (r = 0.66–0.81, p < 0.001) and strong correlation by 2D (r = 0.81–0.84, p < 0.001) with similar correlations and mean differences between techniques (p > 0.05). Ventricular volumes correlated strongly between 2D and 4DF (r = 0.75–0.96, p < 0.001), though 4DF overestimated right ventricle volumes by 11.8–19.2 mL/beat. Inter-rater reliability was excellent for 2D and 4DF volumetry (ICC = 0.91–0.99). Ejection fraction moderately correlated (r = 0.60–0.75, p < 0.001) with better reliability by 4DF (ICC: 0.80–0.85) than 2D (ICC: 0.69–0.89). 4DF exams were shorter than 2D (9 vs. 71 min, p < 0.001). 4DF provides highly reproducible and accurate measurements of flow with slight overestimation of RV volumes compared to 2D in pediatric rTOF. 4DF offers important advantages in this population with long-term monitoring needs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

4DF:

3D time-resolved flow

ANF:

Aortic net flow

BPA:

Branch pulmonary arteries

CMR:

Cardiac magnetic resonance imaging

EDV:

End diastolic volume

EDVi:

End-diastolic volume index

EF:

Ejection fraction

ESV:

End systolic volume

ESVi:

End-systolic volume index

FF:

Forward flow

IQR:

Interquartile range

LOA:

Limits of agreement

LV:

Left ventricle

MAPCA:

Major aortopulmonary collateral arteries

MPA:

Main pulmonary artery

PC:

Phase contrast

PNF:

Pulmonary net flow

PR:

Pulmonary regurgitation

PV:

Pulmonary valve

PVR:

Pulmonary valve replacement

RV:

Right ventricle

rTOF:

Repaired tetralogy of Fallot

SD:

Standard deviation

SSFP:

Steady state free precession

SV:

Stroke volume

VENC:

Velocity encoded

References

  1. Parker SE, Mai CT, Canfield MA, Rickard R, Wang Y, Meyer RE, Anderson P, Mason CA, Collins JS, Kirby RS, Correa A, National Birth Defects Prevention N (2010) Updated National Birth Prevalence estimates for selected birth defects in the United States, 2004–2006. Birth Defects Res A 88(12):1008–1016. https://doi.org/10.1002/bdra.20735

    Article  CAS  Google Scholar 

  2. Gatzoulis MA, Balaji S, Webber SA, Siu SC, Hokanson JS, Poile C, Rosenthal M, Nakazawa M, Moller JH, Gillette PC, Webb GD, Redington AN (2000) Risk factors for arrhythmia and sudden cardiac death late after repair of tetralogy of Fallot: a multicentre study. Lancet 356(9234):975–981. https://doi.org/10.1016/S0140-6736(00)02714-8

    Article  CAS  PubMed  Google Scholar 

  3. Valente AM, Gauvreau K, Assenza GE, Babu-Narayan SV, Schreier J, Gatzoulis MA, Groenink M, Inuzuka R, Kilner PJ, Koyak Z, Landzberg MJ, Mulder B, Powell AJ, Wald R, Geva T (2014) Contemporary predictors of death and sustained ventricular tachycardia in patients with repaired tetralogy of Fallot enrolled in the INDICATOR cohort. Heart 100(3):247–253. https://doi.org/10.1136/heartjnl-2013-304958

    Article  PubMed  Google Scholar 

  4. Knauth AL, Gauvreau K, Powell AJ, Landzberg MJ, Walsh EP, Lock JE, del Nido PJ, Geva T (2008) Ventricular size and function assessed by cardiac MRI predict major adverse clinical outcomes late after tetralogy of Fallot repair. Heart 94(2):211–216. https://doi.org/10.1136/hrt.2006.104745

    Article  CAS  PubMed  Google Scholar 

  5. Lee C, Kim YM, Lee CH, Kwak JG, Park CS, Song JY, Shim WS, Choi EY, Lee SY, Baek JS (2012) Outcomes of pulmonary valve replacement in 170 patients with chronic pulmonary regurgitation after relief of right ventricular outflow tract obstruction: implications for optimal timing of pulmonary valve replacement. J Am Coll Cardiol 60(11):1005–1014. https://doi.org/10.1016/j.jacc.2012.03.077

    Article  PubMed  Google Scholar 

  6. Geva T, Gauvreau K, Powell AJ, Cecchin F, Rhodes J, Geva J, del Nido P (2010) Randomized trial of pulmonary valve replacement with and without right ventricular remodeling surgery. Circulation 122(11 Suppl):S201–208. https://doi.org/10.1161/CIRCULATIONAHA.110.951178

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bokma JP, Winter MM, Oosterhof T, Vliegen HW, van Dijk AP, Hazekamp MG, Koolbergen DR, Groenink M, Mulder BJ, Bouma BJ (2016) Preoperative thresholds for mid-to-late haemodynamic and clinical outcomes after pulmonary valve replacement in tetralogy of Fallot. Eur Heart J 37(10):829–835. https://doi.org/10.1093/eurheartj/ehv550

    Article  PubMed  Google Scholar 

  8. Oosterhof T, van Straten A, Vliegen HW, Meijboom FJ, van Dijk AP, Spijkerboer AM, Bouma BJ, Zwinderman AH, Hazekamp MG, de Roos A, Mulder BJ (2007) Preoperative thresholds for pulmonary valve replacement in patients with corrected tetralogy of Fallot using cardiovascular magnetic resonance. Circulation 116(5):545–551. https://doi.org/10.1161/CIRCULATIONAHA.106.659664

    Article  PubMed  Google Scholar 

  9. Fratz S, Chung T, Greil GF, Samyn MM, Taylor AM, Valsangiacomo Buechel ER, Yoo SJ, Powell AJ (2013) Guidelines and protocols for cardiovascular magnetic resonance in children and adults with congenital heart disease: SCMR expert consensus group on congenital heart disease. J Cardiovasc Magn Reson 15:51. https://doi.org/10.1186/1532-429X-15-51

    Article  PubMed  PubMed Central  Google Scholar 

  10. Valente AM, Cook S, Festa P, Ko HH, Krishnamurthy R, Taylor AM, Warnes CA, Kreutzer J, Geva T (2014) Multimodality imaging guidelines for patients with repaired tetralogy of fallot: a report from the American Society of Echocardiography: developed in collaboration with the Society for Cardiovascular Magnetic Resonance and the Society for Pediatric Radiology. J Am Soc Echocardiogr 27(2):111–141. https://doi.org/10.1016/j.echo.2013.11.009

    Article  PubMed  Google Scholar 

  11. Wald RM, Valente AM, Gauvreau K, Babu-Narayan SV, Assenza GE, Schreier J, Gatzoulis MA, Kilner PJ, Koyak Z, Mulder B, Powell AJ, Geva T (2015) Cardiac magnetic resonance markers of progressive RV dilation and dysfunction after tetralogy of Fallot repair. Heart 101(21):1724–1730. https://doi.org/10.1136/heartjnl-2015-308014

    Article  CAS  PubMed  Google Scholar 

  12. Vasanawala SS, Hanneman K, Alley MT, Hsiao A (2015) Congenital heart disease assessment with 4D flow MRI. J Magn Reson Imaging 42(4):870–886. https://doi.org/10.1002/jmri.24856

    Article  PubMed  Google Scholar 

  13. Hsiao A, Alley MT, Massaband P, Herfkens RJ, Chan FP, Vasanawala SS (2011) Improved cardiovascular flow quantification with time-resolved volumetric phase-contrast MRI. Pediatr Radiol 41(6):711–720. https://doi.org/10.1007/s00247-010-1932-z

    Article  PubMed  Google Scholar 

  14. Hsiao A, Lustig M, Alley MT, Murphy M, Chan FP, Herfkens RJ, Vasanawala SS (2012) Rapid pediatric cardiac assessment of flow and ventricular volume with compressed sensing parallel imaging volumetric cine phase-contrast MRI. AJR Am J Roentgenol 198(3):W250–259. https://doi.org/10.2214/AJR.11.6969

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hsiao A, Tariq U, Alley MT, Lustig M, Vasanawala SS (2015) Inlet and outlet valve flow and regurgitant volume may be directly and reliably quantified with accelerated, volumetric phase-contrast MRI. J Magn Reson Imaging 41(2):376–385. https://doi.org/10.1002/jmri.24578

    Article  PubMed  Google Scholar 

  16. Hanneman K, Kino A, Cheng JY, Alley MT, Vasanawala SS (2016) Assessment of the precision and reproducibility of ventricular volume, function, and mass measurements with ferumoxytol-enhanced 4D flow MRI. J Magn Reson Imaging 44(2):383–392. https://doi.org/10.1002/jmri.25180

    Article  PubMed  PubMed Central  Google Scholar 

  17. van der Hulst AE, Westenberg JJ, Kroft LJ, Bax JJ, Blom NA, de Roos A, Roest AA (2010) Tetralogy of Fallot: 3D Velocity-encoded MR imaging for evaluation of right ventricular valve flow and diastolic function in patients after correction. Radiology 256(3):724–734. https://doi.org/10.1148/radiol.10092269

    Article  PubMed  Google Scholar 

  18. Kamphuis VP, van der Palen RLF, de Koning PJH, Elbaz MSM, van der Geest RJ, de Roos A, Roest AAW, Westenberg JJM (2018) In-scan and scan-rescan assessment of LV in- and outflow volumes by 4D flow MRI versus 2D planimetry. J Magn Reson Imaging 47(2):511–522. https://doi.org/10.1002/jmri.25792

    Article  PubMed  Google Scholar 

  19. Gabbour M, Schnell S, Jarvis K, Robinson JD, Markl M, Rigsby CK (2015) 4-D flow magnetic resonance imaging: blood flow quantification compared to 2-D phase-contrast magnetic resonance imaging and Doppler echocardiography. Pediatr Radiol 45(6):804–813. https://doi.org/10.1007/s00247-014-3246-z

    Article  PubMed  Google Scholar 

  20. Nordmeyer S, Riesenkampff E, Crelier G, Khasheei A, Schnackenburg B, Berger F, Kuehne T (2010) Flow-sensitive four-dimensional cine magnetic resonance imaging for offline blood flow quantification in multiple vessels: a validation study. J Magn Reson Imaging 32(3):677–683. https://doi.org/10.1002/jmri.22280

    Article  PubMed  Google Scholar 

  21. Rahman O, Markl M, Balte P, Berhane H, Blanken C, Suwa K, Dashnaw S, Wieben O, Bluemke DA, Prince MR, Lima J, Michos E, Ambale-Venkatesh B, Hoffman EA, Gomes AS, Watson K, Sun Y, Carr J, Barr RG (2019) Reproducibility and changes in vena caval blood flow by using 4D flow MRI in pulmonary emphysema and chronic obstructive pulmonary disease (COPD): The Multi-Ethnic Study of Atherosclerosis (MESA) COPD Substudy. Radiology 292(3):585–594. https://doi.org/10.1148/radiol.2019182143

    Article  PubMed  Google Scholar 

  22. Geiger J, Markl M, Jung B, Grohmann J, Stiller B, Langer M, Arnold R (2011) 4D-MR flow analysis in patients after repair for tetralogy of Fallot. Eur Radiol 21(8):1651–1657. https://doi.org/10.1007/s00330-011-2108-4

    Article  CAS  PubMed  Google Scholar 

  23. Fredriksson A, Trzebiatowska-Krzynska A, Dyverfeldt P, Engvall J, Ebbers T, Carlhall CJ (2018) Turbulent kinetic energy in the right ventricle: potential MR marker for risk stratification of adults with repaired Tetralogy of Fallot. J Magn Reson Imaging 47(4):1043–1053. https://doi.org/10.1002/jmri.25830

    Article  PubMed  Google Scholar 

  24. Sjoberg P, Bidhult S, Bock J, Heiberg E, Arheden H, Gustafsson R, Nozohoor S, Carlsson M (2018) Disturbed left and right ventricular kinetic energy in patients with repaired tetralogy of Fallot: pathophysiological insights using 4D-flow MRI. Eur Radiol 28(10):4066–4076. https://doi.org/10.1007/s00330-018-5385-3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Hirtler D, Garcia J, Barker AJ, Geiger J (2016) Assessment of intracardiac flow and vorticity in the right heart of patients after repair of tetralogy of Fallot by flow-sensitive 4D MRI. Eur Radiol 26(10):3598–3607. https://doi.org/10.1007/s00330-015-4186-1

    Article  PubMed  PubMed Central  Google Scholar 

  26. Francois CJ, Srinivasan S, Schiebler ML, Reeder SB, Niespodzany E, Landgraf BR, Wieben O, Frydrychowicz A (2012) 4D cardiovascular magnetic resonance velocity mapping of alterations of right heart flow patterns and main pulmonary artery hemodynamics in tetralogy of Fallot. J Cardiovasc Magn Reson 14:16. https://doi.org/10.1186/1532-429X-14-16

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cheng JY, Hanneman K, Zhang T, Alley MT, Lai P, Tamir JI, Uecker M, Pauly JM, Lustig M, Vasanawala SS (2016) Comprehensive motion-compensated highly accelerated 4D flow MRI with ferumoxytol enhancement for pediatric congenital heart disease. J Magn Reson Imaging 43(6):1355–1368. https://doi.org/10.1002/jmri.25106

    Article  PubMed  Google Scholar 

  28. Winkelmann S, Schaeffter T, Koehler T, Eggers H, Doessel O (2007) An optimal radial profile order based on the Golden Ratio for time-resolved MRI. IEEE Trans Med Imaging 26(1):68–76. https://doi.org/10.1109/TMI.2006.885337

    Article  Google Scholar 

  29. Polte CL, Bech-Hanssen O, Johnsson AA, Gao SA, Lagerstrand KM (2015) Mitral regurgitation quantification by cardiovascular magnetic resonance: a comparison of indirect quantification methods. Int J Cardiovasc Imaging 31(6):1223–1231. https://doi.org/10.1007/s10554-015-0681-3

    Article  PubMed  Google Scholar 

  30. Krieger EV, Lee J, Branch KR, Hamilton-Craig C (2016) Quantitation of mitral regurgitation with cardiac magnetic resonance imaging: a systematic review. Heart 102(23):1864–1870. https://doi.org/10.1136/heartjnl-2015-309054

    Article  PubMed  Google Scholar 

  31. Schulz-Menger J, Bluemke DA, Bremerich J, Flamm SD, Fogel MA, Friedrich MG, Kim RJ, von Knobelsdorff-Brenkenhoff F, Kramer CM, Pennell DJ, Plein S, Nagel E (2013) Standardized image interpretation and post processing in cardiovascular magnetic resonance: Society for Cardiovascular Magnetic Resonance (SCMR) board of trustees task force on standardized post processing. J Cardiovasc Magn Reson 15:35. https://doi.org/10.1186/1532-429X-15-35

    Article  PubMed  PubMed Central  Google Scholar 

  32. Feneis JF, Kyubwa E, Atianzar K, Cheng JY, Alley MT, Vasanawala SS, Demaria AN, Hsiao A (2018) 4D flow MRI quantification of mitral and tricuspid regurgitation: reproducibility and consistency relative to conventional MRI. J Magn Reson Imaging 48(4):1147–1158. https://doi.org/10.1002/jmri.26040

    Article  PubMed  Google Scholar 

  33. Zoghbi WA, Adams D, Bonow RO, Enriquez-Sarano M, Foster E, Grayburn PA, Hahn RT, Han Y, Hung J, Lang RM, Little SH, Shah DJ, Shernan S, Thavendiranathan P, Thomas JD, Weissman NJ (2017) Recommendations for noninvasive evaluation of native valvular regurgitation: a report from the American Society of Echocardiography Developed in Collaboration with the Society for Cardiovascular Magnetic Resonance. J Am Soc Echocardiogr 30(4):303–371. https://doi.org/10.1016/j.echo.2017.01.007

    Article  PubMed  Google Scholar 

  34. Haycock GB, Schwartz GJ, Wisotsky DH (1978) Geometric method for measuring body surface area: a height-weight formula validated in infants, children, and adults. J Pediatr 93(1):62–66

    Article  CAS  Google Scholar 

  35. Bland JM, Altman DG (1986) Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1(8476):307–310

    Article  CAS  Google Scholar 

  36. FDA Drug Safety Communication: FDA strengthens warnings and changes prescribing instructions to decrease the risk of serious allergic reactions with anemia drug Feraheme (ferumoxytol).

  37. Bailie GR (2012) Comparison of rates of reported adverse events associated with i.v. iron products in the United States. Am J Health Syst Pharm 69(4):310–320. https://doi.org/10.2146/ajhp110262

    Article  CAS  PubMed  Google Scholar 

  38. Hanneman K, Sivagnanam M, Nguyen ET, Wald R, Greiser A, Crean AM, Ley S, Wintersperger BJ (2014) Magnetic resonance assessment of pulmonary (QP) to systemic (QS) flows using 4D phase-contrast imaging: pilot study comparison with standard through-plane 2D phase-contrast imaging. Acad Radiol 21(8):1002–1008. https://doi.org/10.1016/j.acra.2014.04.012

    Article  PubMed  Google Scholar 

  39. Nordmeyer S, Riesenkampff E, Messroghli D, Kropf S, Nordmeyer J, Berger F, Kuehne T (2013) Four-dimensional velocity-encoded magnetic resonance imaging improves blood flow quantification in patients with complex accelerated flow. J Magn Reson Imaging 37(1):208–216. https://doi.org/10.1002/jmri.23793

    Article  PubMed  Google Scholar 

  40. O'Brien KR, Cowan BR, Jain M, Stewart RA, Kerr AJ, Young AA (2008) MRI phase contrast velocity and flow errors in turbulent stenotic jets. J Magn Reson Imaging 28(1):210–218. https://doi.org/10.1002/jmri.21395

    Article  PubMed  Google Scholar 

  41. Gatenby JC, McCauley TR, Gore JC (1993) Mechanisms of signal loss in magnetic resonance imaging of stenoses. Med Phys 20(4):1049–1057. https://doi.org/10.1118/1.597001

    Article  CAS  PubMed  Google Scholar 

  42. Westenberg JJ, Roes SD, Ajmone Marsan N, Binnendijk NM, Doornbos J, Bax JJ, Reiber JH, de Roos A, van der Geest RJ (2008) Mitral valve and tricuspid valve blood flow: accurate quantification with 3D velocity-encoded MR imaging with retrospective valve tracking. Radiology 249(3):792–800. https://doi.org/10.1148/radiol.2492080146

    Article  PubMed  Google Scholar 

  43. Roes SD, Hammer S, van der Geest RJ, Marsan NA, Bax JJ, Lamb HJ, Reiber JH, de Roos A, Westenberg JJ (2009) Flow assessment through four heart valves simultaneously using 3-dimensional 3-directional velocity-encoded magnetic resonance imaging with retrospective valve tracking in healthy volunteers and patients with valvular regurgitation. Invest Radiol 44(10):669–675. https://doi.org/10.1097/RLI.0b013e3181ae99b5

    Article  PubMed  Google Scholar 

  44. Mooij CF, de Wit CJ, Graham DA, Powell AJ, Geva T (2008) Reproducibility of MRI measurements of right ventricular size and function in patients with normal and dilated ventricles. J Magn Reson Imaging 28(1):67–73. https://doi.org/10.1002/jmri.21407

    Article  PubMed  PubMed Central  Google Scholar 

  45. Blalock SE, Banka P, Geva T, Powell AJ, Zhou J, Prakash A (2013) Interstudy variability in cardiac magnetic resonance imaging measurements of ventricular volume, mass, and ejection fraction in repaired tetralogy of Fallot: a prospective observational study. J Magn Reson Imaging 38(4):829–835. https://doi.org/10.1002/jmri.24050

    Article  PubMed  Google Scholar 

  46. Nacif MS, Arai AE, Lima JA, Bluemke DA (2012) Gadolinium-enhanced cardiovascular magnetic resonance: administered dose in relationship to united states food and drug administration (FDA) guidelines. J Cardiovasc Magn Reson 14(1):18. https://doi.org/10.1186/1532-429x-14-18

    Article  PubMed  PubMed Central  Google Scholar 

  47. McDonald RJ, Levine D, Weinreb J, Kanal E, Davenport MS, Ellis JH, Jacobs PM, Lenkinski RE, Maravilla KR, Prince MR, Rowley HA, Tweedle MF, Kressel HY (2018) Gadolinium Retention: A Research Roadmap from the 2018 NIH/ACR/RSNA Workshop on Gadolinium Chelates. Radiology 289(2):517–534. https://doi.org/10.1148/radiol.2018181151

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Contributions

KJ contributed to the design, collected data, analyzed data, and wrote the manuscript. SM originated the design, collected data, analyzed data, and provided major edits to the manuscript. FC and JC edited the manuscript. SV contributed to conceptualization of project and the manuscript. All authors read and approved the final manuscript. All authors have full control of primary data, and it may be reviewed by the journal if requested.

Corresponding author

Correspondence to Kimberley G. Jacobs.

Ethics declarations

Conflict of interest

KJ, FC, SM: none. JC: research support from GE Healthcare and is a consultant for HeartVista, Inc. SV: ownership interest in Arterys and has research support from GE Healthcare.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was waived by the institutional IRB.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10554_2019_1751_MOESM1_ESM.tiff

Supp Fig. 1 Representative examples of 4-chamber (A), right ventricle 2-chamber (B), and left ventricle 2-chamber (C) views in a 20 year old female with rTOF using 4DF CMR on a 1.5T magnet with gadobenate enhancement. (TIFF 5891 kb)

10554_2019_1751_MOESM2_ESM.tiff

Supp Fig. 2 Representative examples of short axis volumetry acquisitions from rTOF subjects obtained by varying techniques and methodologies, as references for comparison: (A) a typical 2D SSFP imaging obtained with 1.5-T MRI from an 11 year old, (B) gadobenate dimeglumine enhanced 4DF CMR obtained with 1.5-T MRI from a 12 year old, and (C) ferumoxytol-enhanced 4DF CMR obtained with 3-T MRI from a 15 year old. (TIFF 4032 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jacobs, K.G., Chan, F.P., Cheng, J.Y. et al. 4D flow vs. 2D cardiac MRI for the evaluation of pulmonary regurgitation and ventricular volume in repaired tetralogy of Fallot: a retrospective case control study. Int J Cardiovasc Imaging 36, 657–669 (2020). https://doi.org/10.1007/s10554-019-01751-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-019-01751-1

Keywords

Navigation