Skip to main content

Advertisement

Log in

Significance of ER–Src axis in hormonal therapy resistance

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

The estrogen receptor (ER) is implicated in the progression of breast cancer. Despite positive effects of hormonal therapy, initial or acquired resistance to endocrine therapies frequently occurs. Recent studies suggested ERα-coregulator PELP1 and growth factor receptor ErbB2/HER2 play an essential role in hormonal therapy responsiveness. Src axis couples ERα with HER2 and PELP1, thus representing a new pathway for targeted therapy resistance. To establish the significance of ER–Src axis in PELP1 and HER2 mediated therapy resistance, we have generated model cells that stably express Src-shRNA under conditions of PELP1, HER2 deregulation. Depletion of Src using shRNA substantially reduced E2 mediated activation of Src and MAPK activation in resistant model cells. Pharmacological inhibition of Src using dasatinib, an orally available inhibitor substantially inhibited the growth of therapy resistant MCF7–PELP1, MCF7–HER2, and MCF7–Tam model cells in proliferation assays. In post-menopausal xenograft based studies, treatment with dasatinib significantly inhibited the growth of therapy resistant cells. IHC analysis revealed that the tumors were ERα positive, and dasatinib treated tumors exhibited alterations in Src and MAPK signaling pathways. Combinatorial therapy of tamoxifen with dasatinib showed better therapeutic effect compared to single agent therapy on the growth of therapy resistant PELP1 driven tumors. The results from our study showed that ER–Src axis play an important role in promoting hormonal resistance by proto-oncogenes such as HER2, PELP1, and blocking this axis prevents the development of hormonal independence in vivo. Since PELP1, HER2, and Src kinase are commonly deregulated in breast cancers, combination therapies using both endocrine agents and dasatinib may have better therapeutic effect by delaying the development of hormonal resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ariazi EA, Ariazi JL, Cordera F, Jordan VC (2006) Estrogen receptors as therapeutic targets in breast cancer. Curr Top Med Chem 6:195–216

    Article  Google Scholar 

  2. Lewis-Wambi JS, Jordan VC (2005) Treatment of postmenopausal breast cancer with selective estrogen receptor modulators (SERMs). Breast Dis 24:93–105

    PubMed  CAS  Google Scholar 

  3. Leary A, Dowsett M (2006) Combination therapy with aromatase inhibitors: the next era of breast cancer treatment? Br J Cancer 95:661–666

    Article  PubMed  CAS  Google Scholar 

  4. Musgrove EA, Sutherland RL (2009) Biological determinants of endocrine resistance in breast cancer. Nat Rev Cancer 9:631–643

    Article  PubMed  CAS  Google Scholar 

  5. Gururaj AE, Rayala SK, Vadlamudi RK, Kumar R (2006) Novel mechanisms of resistance to endocrine therapy: genomic and nongenomic considerations. Clin Cancer Res 12:1001s–1007s

    Article  PubMed  CAS  Google Scholar 

  6. Schiff R, Massarweh SA, Shou J, Bharwani L, Arpino G, Rimawi M, Osborne CK (2005) Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance: implicated role of growth factor signaling and estrogen receptor coregulators. Cancer Chemother Pharmacol 56(Suppl 1):10–20

    Article  PubMed  Google Scholar 

  7. Losel R, Wehling M (2003) Nongenomic actions of steroid hormones. Nat Rev Mol Cell Biol 4:46–56

    Article  PubMed  Google Scholar 

  8. Acconcia F, Kumar R (2005) Signaling regulation of genomic and nongenomic functions of estrogen receptors. Cancer Lett 238:1–14

    Article  PubMed  Google Scholar 

  9. Song RX, Zhang Z, Santen RJ (2005) Estrogen rapid action via protein complex formation involving ERalpha and Src. Trends Endocrinol Metab 16:347–353

    Article  PubMed  CAS  Google Scholar 

  10. Hall JM, McDonnell DP (2005) Coregulators in nuclear estrogen receptor action: from concept to therapeutic targeting. Mol Interv 5:343–357

    Article  PubMed  Google Scholar 

  11. Smith CL, O’Malley BW (2004) Coregulator function: a key to understanding tissue specificity of selective receptor modulators. Endocr Rev 25:45–71

    Article  PubMed  CAS  Google Scholar 

  12. Vadlamudi RK, Wang RA, Mazumdar A, Kim Y, Shin J, Sahin A, Kumar R (2001) Molecular cloning and characterization of PELP1, a novel human coregulator of estrogen receptor alpha. J Biol Chem 276:38272–38279

    PubMed  CAS  Google Scholar 

  13. Rajhans R, Nair S, Holden AH, Kumar R, Tekmal RR, Vadlamudi RK (2007) Oncogenic potential of the nuclear receptor coregulator proline-, glutamic acid-, leucine-rich protein 1/modulator of the nongenomic actions of the estrogen receptor. Cancer Res 67:5505–5512

    Article  PubMed  CAS  Google Scholar 

  14. Vadlamudi RK, Kumar R (2007) Functional and biological properties of the nuclear receptor coregulator PELP1/MNAR. Nucl Recept Signal 5:e004

    PubMed  Google Scholar 

  15. Habashy HO, Powe DG, Rakha EA, Ball G, Macmillan RD, Green AR, Ellis IO (2009) The prognostic significance of PELP1 expression in invasive breast cancer with emphasis on the ER-positive luminal-like subtype. Breast Cancer Res Treat 120:603–612

    Article  PubMed  Google Scholar 

  16. Trevino JG, Summy JM, Gallick GE (2006) SRC inhibitors as potential therapeutic agents for human cancers. Mini Rev Med Chem 6:681–687

    Article  PubMed  CAS  Google Scholar 

  17. Russello SV, Shore SK (2004) SRC in human carcinogenesis. Front Biosci 9:139–144

    PubMed  CAS  Google Scholar 

  18. Huang F, Reeves K, Han X, Fairchild C, Platero S, Wong TW, Lee F, Shaw P, Clark E (2007) Identification of candidate molecular markers predicting sensitivity in solid tumors to dasatinib: rationale for patient selection. Cancer Res 67:2226–2238

    Article  PubMed  CAS  Google Scholar 

  19. Summy JM, Gallick GE (2006) Treatment for advanced tumors: SRC reclaims center stage. Clin Cancer Res 12:1398–1401

    Article  PubMed  CAS  Google Scholar 

  20. Nagpal JK, Nair S, Chakravarty D, Rajhans R, Pothana S, Brann DW, Tekmal RR, Vadlamudi RK (2008) Growth factor regulation of estrogen receptor coregulator PELP1 functions via protein kinase A pathway. Mol Cancer Res 6:851–861

    Article  PubMed  CAS  Google Scholar 

  21. Nabha SM, Glaros S, Hong M, Lykkesfeldt AE, Schiff R, Osborne K, Reddy KB (2005) Upregulation of PKC-delta contributes to antiestrogen resistance in mammary tumor cells. Oncogene 24:3166–3176

    Article  PubMed  CAS  Google Scholar 

  22. Dimple C, Nair SS, Rajhans R, Pitcheswara PR, Liu J, Balasenthil S, Le XF, Burow ME, Auersperg N, Tekmal RR, Broaddus RR, Vadlamudi RK (2008) Role of PELP1/MNAR signaling in ovarian tumorigenesis. Cancer Res 68:4902–4909

    Article  PubMed  CAS  Google Scholar 

  23. Vadlamudi RK, Bagheri-Yarmand R, Yang Z, Balasenthil S, Nguyen D, Sahin AA, den Hollanden P, Kumar R (2004) Dynein light chain 1, a p21-activated kinase 1-interacting substrate, promotes cancerous phenotypes. Cancer Cell 5:575–585

    Article  PubMed  CAS  Google Scholar 

  24. Long BJ, Jelovac D, Handratta V, Thiantanawat A, MacPherson N, Ragaz J, Goloubeva OG, Brodie AM (2004) Therapeutic strategies using the aromatase inhibitor letrozole and tamoxifen in a breast cancer model. J Natl Cancer Inst 96:456–465

    Article  PubMed  CAS  Google Scholar 

  25. Jensen MM, Jorgensen JT, Binderup T, Kjaer A (2008) Tumor volume in subcutaneous mouse xenografts measured by microCT is more accurate and reproducible than determined by 18F-FDG-microPET or external caliper. BMC Med Imaging 8:16

    Article  PubMed  Google Scholar 

  26. Euhus DM, Hudd C, LaRegina MC, Johnson FE (1986) Tumor measurement in the nude mouse. J Surg Oncol 31:229–234

    Article  PubMed  CAS  Google Scholar 

  27. Vadlamudi RK, Balasenthil S, Sahin AA, Kies M, Weber RS, Kumar R, El-Naggar AK (2005) Novel estrogen receptor coactivator PELP1/MNAR gene and ERbeta expression in salivary duct adenocarcinoma: potential therapeutic targets. Hum Pathol 36:670–675

    Article  PubMed  CAS  Google Scholar 

  28. Balasenthil S, Vadlamudi RK (2003) Functional interactions between the estrogen receptor coactivator PELP1/MNAR and retinoblastoma protein. J Biol Chem 278:22119–22127

    Article  PubMed  CAS  Google Scholar 

  29. Vadlamudi RK, Manavathi B, Balasenthil S, Nair SS, Yang Z, Sahin AA, Kumar R (2005) Functional implications of altered subcellular localization of PELP1 in breast cancer cells. Cancer Res 65:7724–7732

    PubMed  CAS  Google Scholar 

  30. Chang Q, Jorgensen C, Pawson T, Hedley DW (2008) Effects of dasatinib on EphA2 receptor tyrosine kinase activity and downstream signalling in pancreatic cancer. Br J Cancer 99:1074–1082

    Article  PubMed  CAS  Google Scholar 

  31. Rajhans R, Nair HB, Nair SS, Cortez V, Ikuko K, Kirma NB, Zhou D, Holden AE, Brann DW, Chen S, Tekmal RR, Vadlamudi RK (2008) Modulation of in situ estrogen synthesis by PELP1: potential ER autocrine signaling loop in breast cancer cells. Mol Endocrinol 22:649–664

    Article  PubMed  CAS  Google Scholar 

  32. Kumar R, Zhang H, Holm C, Vadlamudi RK, Landberg G, Rayala SK (2009) Extranuclear coactivator signaling confers insensitivity to tamoxifen. Clin Cancer Res 15:4123–4130

    Article  PubMed  CAS  Google Scholar 

  33. Ali S, Coombes RC (2002) Endocrine-responsive breast cancer and strategies for combating resistance. Nat Rev Cancer 2:101–112

    Article  PubMed  Google Scholar 

  34. Bjornstrom L, Sjoberg M (2005) Mechanisms of estrogen receptor signaling: convergence of genomic and nongenomic actions on target genes. Mol Endocrinol 19:833–842

    Article  PubMed  Google Scholar 

  35. Lonard DM, O’Malley BW (2006) The expanding cosmos of nuclear receptor coactivators. Cell 125:411–414

    Article  PubMed  CAS  Google Scholar 

  36. Collingwood TN, Urnov FD, Wolffe AP (1999) Nuclear receptors: coactivators, corepressors and chromatin remodeling in the control of transcription. J Mol Endocrinol 23:255–275

    Article  PubMed  CAS  Google Scholar 

  37. Schiff R, Massarweh S, Shou J, Osborne CK (2003) Breast cancer endocrine resistance: how growth factor signaling and estrogen receptor coregulators modulate response. Clin Cancer Res 9:447S–454S

    PubMed  CAS  Google Scholar 

  38. Marcom PK, Isaacs C, Harris L, Wong ZW, Kommarreddy A, Novielli N, Mann G, Tao Y, Ellis MJ (2006) The combination of letrozole and trastuzumab as first or second-line biological therapy produces durable responses in a subset of HER2 positive and ER positive advanced breast cancers. Breast Cancer Res Treat 102:43–49

    Article  PubMed  Google Scholar 

  39. Shou J, Massarweh S, Osborne CK, Wakeling AE, Ali S, Weiss H, Schiff R (2004) Mechanisms of tamoxifen resistance: increased estrogen receptor–HER2/neu cross-talk in ER/HER2-positive breast cancer. J Natl Cancer Inst 96:926–935

    Article  PubMed  CAS  Google Scholar 

  40. Shin I, Miller T, Arteaga CL (2006) ErbB receptor signaling and therapeutic resistance to aromatase inhibitors. Clin Cancer Res 12:1008s–1012s

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the grants NIH-CA0095681 and DOD-W81XWH-08-1-0604.

Conflicts of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ratna K. Vadlamudi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vallabhaneni, S., Nair, B.C., Cortez, V. et al. Significance of ER–Src axis in hormonal therapy resistance. Breast Cancer Res Treat 130, 377–385 (2011). https://doi.org/10.1007/s10549-010-1312-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-010-1312-2

Keywords

Navigation