Skip to main content

Advertisement

Log in

Prepubertal physical activity up-regulates estrogen receptor β, BRCA1 and p53 mRNA expression in the rat mammary gland

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Findings in BRCA1 mutation carriers suggest that physical activity, particularly during childhood, may be linked to a reduced risk of developing breast cancer. We investigated whether physical activity at puberty alters the expression of BRCA1 and two other tumor suppressor genes—p53 and estrogen receptor (ER)-β—in rats. In addition, the effects on ER-α expression, mammary proliferation and functional epithelial differentiation were investigated as markers of altered mammary cancer risk in rats exposed to regular physical activity at puberty. Female Sprague Dawley rat pups were randomized to voluntary exercise, sham-exercise control and non-manipulated control groups. Treadmill training (20–25 m/min, 15% grade, 30 min/day, 5 days/week) started on postnatal day 14 and continued through day 32. Third thoracic mammary glands (n = 5 per group and age) were obtained at days 32, 48 and 100 and assessed for changes in morphology through wholemounts, and at 100 days cell proliferation by using Ki67 staining, protein levels of ER-α and ER-β by immunohistochemistry, and mRNA expression levels of BRCA1, p53, ER-α and ER-β by real-time PCR. Mammary glands of rats exposed to exercise during puberty contained fewer terminal end buds (TEBs) and a higher number of differentiated alveolar buds and lobules than the sham controls. However, cell proliferation was not significantly altered among the groups. ER-α protein levels were significantly reduced, while ER-β levels were increased in the mammary ducts and lobular epithelial structures of 100-day old rays which were voluntarily exercised at puberty, compared to sham controls. ER-β, BRCA1 and p53 mRNA levels were significantly higher in the mammary glands of 100-day-old exercised versus sham control rats. Pubertal physical activity reduced mammary epithelial targets for neoplastic transformation through epithelial differentiation and it also up-regulated tumor suppressor genes BRCA1, p53 and ER-β, and reduced ER-α/ER-β ratio in the mammary gland. It remains to be determined whether the up-regulation of BRCA1, and perhaps p53, explains the protective effect of childhood physical activity against breast cancer in women who carry a germline mutation in one of the BRCA1 alleles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Friedenreich CM, Courneya KS, Bryant HE (2001) Influence of physical activity in different age and life periods on the risk of breast cancer. Epidemiology 12:604–612. doi:10.1097/00001648-200111000-00005

    Article  PubMed  CAS  Google Scholar 

  2. Lagerros YT, Hsieh SF, Hsieh CC (2004) Physical activity in adolescence and young adulthood and breast cancer risk: a quantitative review. Eur J Cancer Prev 13:5–12. doi:10.1097/00008469-200402000-00002

    Article  PubMed  CAS  Google Scholar 

  3. King MC, Marks JH, Mandell JB (2003) Breast and ovarian cancer risks due to inherited mutations in BRCA1 and BRCA2. Science 302:643–646. doi:10.1126/science.1088759

    Article  PubMed  CAS  Google Scholar 

  4. Hulver MW, Houmard JA (2003) Plasma leptin and exercise: recent findings. Sports Med 33:473–482. doi:10.2165/00007256-200333070-00001

    Article  PubMed  Google Scholar 

  5. McTiernan A, Wu L, Chen C, Chlebowski R, Mossavar-Rahmani Y, Modugno F et al (2006) Relation of BMI and physical activity to sex hormones in postmenopausal women. Obesity (Silver Spring) 14:1662–1677. doi:10.1038/oby.2006.191

    Article  CAS  Google Scholar 

  6. Tworoger SS, Missmer SA, Eliassen AH, Barbieri RL, Dowsett M, Hankinson SE (2007) Physical activity and inactivity in relation to sex hormone, prolactin, and insulin-like growth factor concentrations in premenopausal women : Exercise and premenopausal hormones. Cancer Causes Control 18:743–752. doi:10.1007/s10552-007-9017-5

    Article  PubMed  Google Scholar 

  7. Margolis KL, Mucci L, Braaten T, Kumle M, Trolle LY, Adami HO et al (2005) Physical activity in different periods of life and the risk of breast cancer: the Norwegian-Swedish Women’s Lifestyle and Health cohort study. Cancer Epidemiol Biomarkers Prev 14:27–32

    PubMed  Google Scholar 

  8. Monninkhof EM, Elias SG, Vlems FA, van der Tweel I, Schuit AJ, Voskuil DW, van Leeuwen FE (2007) Physical activity and breast cancer: a systematic review. Epidemiology 18:137–157. doi:10.1097/01.ede.0000251167.75581.98

    Article  PubMed  Google Scholar 

  9. Steindorf K, Schmidt M, Kropp S, Chang-Claude J (2003) Case-control study of physical activity and breast cancer risk among premenopausal women in Germany. Am J Epidemiol 157:121–130. doi:10.1093/aje/kwf181

    Article  PubMed  Google Scholar 

  10. Antoniou AC, Easton DF (2006) Models of genetic susceptibility to breast cancer. Oncogene 25:5898–5905. doi:10.1038/sj.onc.1209879

    Article  PubMed  CAS  Google Scholar 

  11. Dobrovic A, Simpfendorfer D (1997) Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res 57:3347–3350

    PubMed  CAS  Google Scholar 

  12. Matros E, Wang ZC, Lodeiro G, Miron A, Iglehart JD, Richardson AL (2005) BRCA1 promoter methylation in sporadic breast tumors: relationship to gene expression profiles. Breast Cancer Res Treat 91:179–186. doi:10.1007/s10549-004-7603-8

    Article  PubMed  CAS  Google Scholar 

  13. Hoshino A, Yee CJ, Campbell M, Woltjer RL, Townsend RL, van der MR, Shyr Y, Holt JT, Moses HL, Jensen RA (2007) Effects of BRCA1 transgene expression on murine mammary gland development and mutagen-induced mammary neoplasia. Int J Biol Sci 3:281–291

  14. Marquis ST, Rajan JV, Wynshaw-Boris A, Xu J, Yin GY, Abel KJ et al (1995) The developmental pattern of BRCA1 expression implies a role in differentiation of the breast and other tissues. Nat Genet 11:17–26. doi:10.1038/ng0995-17

    Article  PubMed  CAS  Google Scholar 

  15. Russo J, Mailo D, Hu YF, Balogh G, Sheriff F, Russo IH (2005) Breast differentiation and its implication in cancer prevention. Clin Cancer Res 11:931s–936s

    PubMed  CAS  Google Scholar 

  16. Mullan PB, Quinn JE, Harkin DP (2006) The role of BRCA1 in transcriptional regulation and cell cycle control. Oncogene 25:5854–5863. doi:10.1038/sj.onc.1209872

    Article  PubMed  CAS  Google Scholar 

  17. Narod SA, Foulkes WD (2004) BRCA1 and BRCA2: 1994 and beyond. Nat Rev Cancer 4:665–676. doi:10.1038/nrc1431

    Article  PubMed  CAS  Google Scholar 

  18. Fan S, Wang J-A, Yuan R, Ma Y, Meng Q, Erdos MR et al (1999) BRCA1 inhibition of estrogen receptor signalling in transfected cells. Science 284:1354–1356. doi:10.1126/science.284.5418.1354

    Article  PubMed  CAS  Google Scholar 

  19. Fan S, Xian Ma Y, Wang C, Yuan R, Meng Q, Wang J-A et al (2001) Role of direct interaction in BRCA1 inhibition of estrogen receptor activity. Oncogene 20:77–87. doi:10.1038/sj.onc.1204073

    Article  PubMed  CAS  Google Scholar 

  20. Lacroix M, Toillon RA, Leclercq G (2006) p53 and breast cancer, an update. Endocr Relat Cancer 13:293–325. doi:10.1677/erc.1.01172

    Article  PubMed  CAS  Google Scholar 

  21. Varley JM, McGown G, Thorncroft M, Santibanez-Koref MF, Kelsey AM, Tricker KJ et al (1997) Germ-line mutations of TP53 in Li-Fraumeni families: an extended study of 39 families. Cancer Res 57:3245–3252

    PubMed  CAS  Google Scholar 

  22. Kleihues P, Schauble B, Zur HA, Esteve J, Ohgaki H (1997) Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 150:1–13

    PubMed  CAS  Google Scholar 

  23. Arizti P, Fang L, Park I, Yin Y, Solomon E, Ouchi T et al (2000) Tumor suppressor p53 is required to modulate BRCA1 expression. Mol Cell Biol 20:7450–7459. doi:10.1128/MCB.20.20.7450-7459.2000

    Article  PubMed  CAS  Google Scholar 

  24. Schuyer M, Berns EM (1999) Is TP53 dysfunction required for BRCA1-associated carcinogenesis? Mol Cell Endocrinol 155:143–152. doi:10.1016/S0303-7207(99) 00117-3

    Article  PubMed  CAS  Google Scholar 

  25. Sengupta S, Wasylyk B (2004) Physiological and pathological consequences of the interactions of the p53 tumor suppressor with the glucocorticoid, androgen, and estrogen receptors. Ann N Y Acad Sci 1024:54–71. doi:10.1196/annals.1321.005

    Article  PubMed  CAS  Google Scholar 

  26. Russo J, Gusterson BA, Rogers AE, Russo IH, Wellings SR, van Zwieten MJ (1990) Comparative study of human and rat mammary tumorigenesis. Lab Invest 62:244–278

    PubMed  CAS  Google Scholar 

  27. Russo J, Russo IH (1987) Biological and molecular bases of mammary carcinogenesis. Lab Invest 57:112–137

    PubMed  CAS  Google Scholar 

  28. Cardiff RD (1998) Are the TDLU of the human the same as the LA of mice? J Mammary Gland Biol Neoplasia 3:3–5. doi:10.1023/A:1018714016205

    Article  PubMed  CAS  Google Scholar 

  29. Clarke RB, Howell A, Potten CS, Anderson E (1997) Dissociation between steroid receptor expression and cell proliferation in the human breast. Cancer Res 57:4987–4991

    PubMed  CAS  Google Scholar 

  30. Paech K, Webb P, Kuiper GG, Gustafsson JA, Kushner PJ, Scanlan TS (1997) Differential ligand activation of estrogen receptors Er alpha and ER beta at AP1 sites. Science 277:1508–1510. doi:10.1126/science.277.5331.1508

    Article  PubMed  CAS  Google Scholar 

  31. Cheng G, Weihua Z, Warner M, Gustafsson JA (2004) Estrogen receptors ER alpha and ER beta in proliferation in the rodent mammary gland. Proc Natl Acad Sci USA 101:3739–3746. doi:10.1073/pnas.0307864100

    Article  PubMed  CAS  Google Scholar 

  32. Chang EC, Frasor J, Komm B, Katzenellenbogen BS (2006) Impact of estrogen receptor beta on gene networks regulated by estrogen receptor alpha in breast cancer cells. Endocrinology 147:4831–4842. doi:10.1210/en.2006-0563

    Article  PubMed  CAS  Google Scholar 

  33. Lin CY, Strom A, Li KS, Kietz S, Thomsen JS, Tee JB et al (2007) Inhibitory effects of estrogen receptor beta on specific hormone-responsive gene expression and association with disease outcome in primary breast cancer. Breast Cancer Res 9:R25. doi:10.1186/bcr1667

    Article  PubMed  Google Scholar 

  34. Gustafsson JA, Warner M (2000) Estrogen receptor beta in the breast: role in estrogen responsiveness and development of breast cancer. J Steroid Biochem Mol Biol 74:245–248. doi:10.1016/S0960-0760(00) 00130-8

    Article  PubMed  CAS  Google Scholar 

  35. Hilakivi-Clarke L, Clarke R, Onojafe I, Raygada M, Cho E, Lippman ME (1997) A maternal diet high in n-6 polyunsaturated fats alters mammary gland development, puberty onset, and breast cancer risk among female rat offspring. Proc Natl Acad Sci USA 94:9372–9377. doi:10.1073/pnas.94.17.9372

    Article  PubMed  CAS  Google Scholar 

  36. Bocchinfuso WP, Korach KS (1997) Mammary gland development and tumorigenesis in estrogen receptor knockout mice. J Mammary Gland Biol Neoplasia 2:323–334. doi:10.1023/A:1026339111278

    Article  PubMed  CAS  Google Scholar 

  37. Jones LP, Tilli MT, Assefnia S, Torre K, Halama ED, Parrish A et al (2007) Activation of estrogen signaling pathways collaborates with loss of Brca1 to promote development of ERalpha-negative and ERalpha-positive mammary preneoplasia and cancer. Oncogene

  38. Xu X, Wagner KU, Larson D, Weaver Z, Li C, Ried T et al (1999) Conditional mutation of Brca1 in mammary epithelial cells results in blunted ductal morphogenesis and tumour formation. Nat Genet 22:37–43. doi:10.1038/8743

    Article  PubMed  CAS  Google Scholar 

  39. Jerry DJ, Kuperwasser C, Downing SR, Pinkas J, He C, Dickinson E et al (1998) Delayed involution of the mammary epithelium in BALB/c-p53null mice. Oncogene 17:2305–2312. doi:10.1038/sj.onc.1202157

    Article  PubMed  CAS  Google Scholar 

  40. Locke I, Kote-Jarai Z, Fackler MJ, Bancroft E, Osin P, Nerurkar A et al (2007) Gene promoter hypermethylation in ductal lavage fluid from healthy BRCA gene mutation carriers and mutation-negative controls. Breast Cancer Res 9:R20. doi:10.1186/bcr1657

    Article  PubMed  Google Scholar 

  41. Strathdee G, Sim A, Soutar R, Holyoake TL, Brown R (2007) HOXA5 is targeted by cell-type-specific CpG island methylation in normal cells and during the development of acute myeloid leukaemia. Carcinogenesis 28:299–309. doi:10.1093/carcin/bgl133

    Article  PubMed  CAS  Google Scholar 

  42. Meng ZH, Ben Y, Li Z, Chew K, Ljung BM, Lagios MD et al (2004) Aberrations of breast cancer susceptibility genes occur early in sporadic breast tumors and in acquisition of breast epithelial immortalization. Genes Chromosomes Cancer 41:214–222. doi:10.1002/gcc.20089

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Elizabeth Cho-Fertick who provided medical writing services, funded by National Cancer Institute (U54 CA00100971 for L.H.-C.). The study was funded by grants from Prevent Cancer Foundation (K·W.) and National Cancer Institute (U54 CA00100971, L.H.-C.).

Authors’ contributions

The work described in the manuscript was designed to test a hypothesis proposed by Dr. Leena Hilakivi-Clarke who provided overall direction for the study. Drs. Kim Westerlind and Robert Strange performed the animal study and provided tissues for the analysis, Dr. Mingyue Wang did most of the gene and protein expression experiments, together with Drs. Bin Yu, Galam Khan and Dipti Patil. Graduate student Kelly Boeneman processed the mammary glands and performed morphological assessment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Hilakivi-Clarke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Yu, B., Westerlind, K. et al. Prepubertal physical activity up-regulates estrogen receptor β, BRCA1 and p53 mRNA expression in the rat mammary gland. Breast Cancer Res Treat 115, 213–220 (2009). https://doi.org/10.1007/s10549-008-0062-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-008-0062-x

Keywords

Navigation