Skip to main content

Advertisement

Log in

Minimizing underestimation rate of microcalcifications excised via vacuum-assisted breast biopsy: a blind study

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

The main disadvantage of Vacuum Assisted Breast Biopsy (VABB) is the probability of underestimating atypical ductal hyperplasia (ADH) and ductal carcinoma in situ (DCIS). This study evaluates a modified way of performing VABB.

Methods

266 women with microcalcifications graded BI-RADS 3&4 underwent VABB (11G) on the Fischer’s table. 133 women were allocated to the “standard” protocol and 24 cores were obtained (1 offset-main target and one additional offset). 133 women were randomly allocated to the “extended” protocol and 96 cores were excised (one offset- main target and 7 peripheral offsets). A preoperative diagnosis was established, and the removed volume was calculated. When precursor or malignant lesions were diagnosed, open surgery was performed. A second pathologist, blind to the preoperative results and to the protocol made the postoperative diagnosis. The discrepancy between preoperative and postoperative diagnoses was evaluated.

Results

When the standard protocol was applied, the underestimation rate for preoperative ADH, lobular neoplasia (LN), DCIS was 16.7%, 50% and 14.3% correspondingly. In the extended protocol, no underestimation was present in LN, ADH, but the underestimation rate for DCIS was 6.3%. In the extended protocol, no precursor/malignant tissue was left after VABB in all ADH cases, in 87.5% of LN cases, in 73.3% of DCIS, and in 50% of invasive carcinomas. The volume excised was 2.33 ± 0.60 cc and 6.14 ± 1.30 cc for the standard and the extended protocol, respectively. The rate of hematoma formation did not differ between the two protocols.

Conclusions

This recently introduced, “extended” way of performing VABB in microcalcifications safely minimizes the underestimation rate, which may lead to a modified management of ADH lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Hoorntje LE, Peeters PH, Mali WP et al (2003) Vacuum-assisted breast-biopsy: a critical review. Eur J Cancer 39:1676–1683

    Article  PubMed  CAS  Google Scholar 

  2. Mendez A, Cabanillas F, Echenique M et al (2003) Mammographic features and correlation with biopsy findings using 11-gauge stereotactic vacuum-assisted biopsy (SVABB). Ann Oncol 14:450–454

    Google Scholar 

  3. Ceccarelli G, Casciola L, Battisini I et al (2005) [Non palpable lesions of the breast: the Mammotome-biopsy in the preoperative management of breast cancer]. G Chir 26(5):187–193

    PubMed  CAS  Google Scholar 

  4. Obenauer S, Fischer U, Baum F et al (2001) [Stereotactic vacuum core biopsy of clustered microcalcifications classified as BI-RADS 3]. Rofo 173(8):696–701

    PubMed  CAS  Google Scholar 

  5. Altomare V, Guerriero G, Giacomelli L et al (2005) Management of nonpalpable breast lesions in a modern functional breast unit. Breast Cancer Res Treat 93(1):85–89

    Article  PubMed  Google Scholar 

  6. Takahashi K, Gomi N, Iwase T et al (2006) The role and efficacy of Mammotome biopsy (vacuum-assisted breast biopsy). Nippon Rinsho 64(3):469–474

    Google Scholar 

  7. Dhillon MS, Bradley SA, England DW (2006) Mammotome biopsy: impact on preoperative diagnosis rate. Clin Radiol 61(3):469–474

    Article  Google Scholar 

  8. Pisano ED, Fajardo LL, Tsimikas J et al (1999) Rate of insufficient samples for fine-needle aspiration for non-palpable breast lesions in a multicenter clinical trial: the radiologic diagnostic oncology group 5 study. Cancer 82:678–688

    Google Scholar 

  9. Britton PD (1999) Fine needle aspiration or core biopsy. Breast 8:1–4

    Article  Google Scholar 

  10. Diebold T, Jacobi V, Krapfl E et al (2003) [The role of stereotactic 11G vacuum biopsy for clarification of BI-RADS IV findings in mammography]. Rofo 175(4):489–494

    PubMed  CAS  Google Scholar 

  11. Cox D, Bradley S, England D (2006) The significance of mammotome core biopsy specimens without radiographically identifiable microcalcification and their influence on surgical management- A rertospective review histological correlation. Breast 15:210–218

    Article  PubMed  CAS  Google Scholar 

  12. Kettritz U, Morack G, Decker T (2005) Stereotactic vacuum-assisted breast biopsies in 500 women with microcalcifications: radiological and pathological correlations. EJR 55:270–276

    Article  Google Scholar 

  13. Cangiarella J, Waisman J, Symmans F et al (2001) Mammotome core biopsy for mammary microcalcification. Analysis of 160 biopsies from 142 women with surgical and radiologic follow-up. Cancer 91(1):173–177

    Article  PubMed  CAS  Google Scholar 

  14. Yamamoto D, Yamada M, Okugawa H et al (2004) Predicting invasion in mammographically detected microcalcification: a preliminary report. World J Surg Oncol 2(1):8

    Article  PubMed  Google Scholar 

  15. Plantade R, Hammou JC, Fighiera M et al (2004) Sous-estimation du cancer du sein par les macrobiopsies stéréotaxiques 11-gauge assistées par le vide. J Radiol 85:391–401

    Article  PubMed  CAS  Google Scholar 

  16. Bedei L, Falcini F, Sanna PA et al (2006) Atypical ductal hyperplasia of the breast: the controversional management of a borderline lesion: Experience of 47 cases diagnosed at vacuum-assisted biopsy. Breast 15:196–202

    Article  PubMed  CAS  Google Scholar 

  17. Brem RF, Berndt VS, Sanow L et al (1999) Atypical ductal hyperplasia: histological underestimation of carcinoma in tissue harvested from impalpable breast lesions using 11-gauge stereotactically guided directional vacuum-assisted biopsy. AJR 172:1405–1407

    PubMed  CAS  Google Scholar 

  18. Obenauer S, Hermann KP, Grabbe E (2005) Applications and literature review of the BI-RADS classification. Eur Radiol 15:1027–1036

    Article  PubMed  CAS  Google Scholar 

  19. Orel SG, Kay N, Reynolds C et al (1999) BI-RADS categorization as a predictor of malignancy. Radiology 211:845–850

    PubMed  CAS  Google Scholar 

  20. Eberl M, Fox C, Edge S et al (2006) BI-RADS classification for management of abnormal mammograms. J Am Board Fam Med 19(2):161–164

    Article  PubMed  Google Scholar 

  21. Chabriais J, Kinkel K, Thibault F (2002) Le système BI-RADS en imagerie mammaire: initiation à son utilization en version francaise. J Radiol 83:531–534

    PubMed  CAS  Google Scholar 

  22. Heywang-Kobrunner SH, Schreer I, Decker T et al (2003) Interdisciplinary consensus on the use and technique of vacuum assisted stereotactic breast biopsy. Eur J Radiol 47:232–236

    Article  PubMed  CAS  Google Scholar 

  23. Simon J, Kalbhen C, Cooper R et al (2000) Accuracy and complication rates of US-guided Vacuum-assisted breast biopsy: initial results. Radiology 215:694–697

    PubMed  CAS  Google Scholar 

  24. Huber S, Wagner M, Medl M et al (2003) Benign breast lesions: minimally invasive vacuum-assisted biopsy with 11-G needles-patient acceptance and effect on follow-up imaging findings. Radiology 226:783–790

    Article  PubMed  Google Scholar 

  25. Mendez A, Cabanillas F, Echenique M et al (2003) Mammographic features and correlation with biopsy findings using 11-gauge stereotactic vacuum-assisted breast biopsy (SVABB). Ann Oncol 14:450–454

    Google Scholar 

  26. Cassano E, Urban L, Pizzamiglio M, et al (2006) Ultrasound-guided vacuum-assisted core breast biopsy: experience with 406 cases. Breast Cancer Res Treat 102:103–110

    Article  PubMed  Google Scholar 

  27. Ciatto S, Houssami N, Ambrogetti D et al (2006) Accuracy and underestimation of malignancy of breast core needle biopsy: the Florence experience of over 4000 consecutive biopsies. Breast Cancer Res Treat 101:291–297

    Article  PubMed  Google Scholar 

  28. Jackman RJ, Burbank F, Parker SH et al (2001) Stereotactic breast biopsy of nonpalpable lesions: determinants of ductal carcinoma in situ underestimation rates. Radiology 218:497–502

    PubMed  CAS  Google Scholar 

  29. Lomoschitz FM, Helbich TH, Rudas M et al (2004) Stereotactic 11-gauge vacuum-assisted breast biopsy: influence of number of specimens on diagnostic accuracy. Radiology 232:897–903

    Article  PubMed  Google Scholar 

  30. Zografos GC, Zagouri F, Sergentanis TN et al (2007) Is zero underestimation feasible? Extended Vacuum-assisted breast biopsy in solid lesions – a blind study. World J Surg Oncol 5:53

    Article  PubMed  Google Scholar 

  31. Liberman L, Dershaw DD, Rosen PP et al (1998) Percutaneous removal of malignant mammographic lesions at stereotactic vacuum-assisted biopsy. Radiology 206:711–715

    PubMed  CAS  Google Scholar 

  32. Gajdos C, Levy M, Herman Z et al (1999) Complete removal of nonpalpable breast malignancies with a stereotactic percutaneous vacuum-assisted biopsy instrument. J Am Coll Surg 189:237–240

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George C. Zografos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zografos, G.C., Zagouri, F., Sergentanis, T.N. et al. Minimizing underestimation rate of microcalcifications excised via vacuum-assisted breast biopsy: a blind study. Breast Cancer Res Treat 109, 397–402 (2008). https://doi.org/10.1007/s10549-007-9662-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-007-9662-0

Keywords

Navigation