Skip to main content
Log in

The Response of Bone Marrow-Derived Mesenchymal Stem Cells to Dynamic Compression Following TGF-β3 Induced Chondrogenic Differentiation

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

The objective of this study was to investigate the hypothesis that the application of dynamic compression following transforming growth factor-β3 (TGF-β3) induced differentiation will further enhance chondrogenesis of mesenchymal stem cells (MSCs). Porcine MSCs were encapsulated in agarose hydrogels and cultured in a chemically defined medium with TGF-β3 (10 ng/mL). Dynamic compression (1 Hz, 10% strain, 1 h/day) was initiated at either day 0 or day 21 and continued until day 42 of culture; with TGF-β3 withdrawn from some groups at day 21. Biochemical and mechanical properties of the MSC-seeded constructs were evaluated up to day 42. The application of dynamic compression from day 0 inhibited chondrogenesis of MSCs. This inhibition of chondrogenesis in response to dynamic compression was not observed if MSC-seeded constructs first underwent 21 days of chondrogenic differentiation in the presence of TGF-β3. Spatial differences in sGAG accumulation in response to both TGF-β3 stimulation and dynamic compression were observed within the constructs. sGAG release from the engineered construct into the surrounding culture media was also dependent on TGF-β3 stimulation, but was not effected by dynamic compression. Continued supplementation with TGF-β3 appeared to be a more potent chondrogenic stimulus than the application of 1 h of daily dynamic compression following cytokine initiated differentiation. In the context of cartilage tissue engineering, the results of this study suggest that MSC seeded constructs should be first allowed to undergo chondrogenesis in vitro prior to implantation in a load bearing environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Angele, P., D. Schumann, M. Angele, B. Kinner, C. Englert, R. Hente, B. Fuchtmeier, M. Nerlich, C. Neumann, and R. Kujat. Cyclic, mechanical compression enhances chondrogenesis of mesenchymal progenitor cells in tissue engineering scaffolds. Biorheology 41:335–346, 2004.

    CAS  PubMed  Google Scholar 

  2. Angele, P., J. U. Yoo, C. Smith, J. Mansour, K. J. Jepsen, M. Nerlich, and B. Johnstone. Cyclic hydrostatic pressure enhances the chondrogenic phenotype of human mesenchymal progenitor cells differentiated in vitro. J. Orthop. Res. 21:451–457, 2003.

    Article  CAS  PubMed  Google Scholar 

  3. Babalola, O. M., and L. J. Bonassar. Effects of seeding density on proteoglycan assembly of passaged mesenchymal stem cells. Cell. Mol. Bioeng. Epub March 2, 2010. doi:10.1007/s12195-010-0107-1.

  4. Barbero, A., S. Grogan, D. Schafer, M. Heberer, P. Mainil-Varlet, and I. Martin. Age related changes in human articular chondrocyte yield, proliferation and post-expansion chondrogenic capacity. Osteoarthritis Cartilage 12:476–484, 2004.

    Article  PubMed  Google Scholar 

  5. Brittberg, M., A. Lindahl, A. Nilsson, C. Ohlsson, O. Isaksson, and L. Peterson. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N. Engl. J. Med. 331:889–895, 1994.

    Article  CAS  PubMed  Google Scholar 

  6. Buckley, C. T., S. D. Thorpe, O’ Brien F. J., A. J. Robinson, and D. J. Kelly. The effect of concentration, thermal history and cell seeding density on the initial mechanical properties of agarose hydrogels. J. Mech. Behav. Biomed. Mater. 2:512–521, 2009.

    Article  PubMed  Google Scholar 

  7. Buckley, C. T., T. Vinardell, S. D. Thorpe, M. G. Haugh, E. Jones, D. McGonagle, and D. J. Kelly. Functional properties of cartilaginous tissues engineered from infrapatellar fat pad-derived mesenchymal stem cells. J. Biomech. 43:920–926, 2010.

    Article  PubMed  Google Scholar 

  8. Buckwalter, J. A., and H. J. Mankin. Articular cartilage: Part II. J. Bone Joint Surg. (American Volume) 79:612–632, 1997.

    Google Scholar 

  9. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, and E. B. Hunziker. Mechanical compression modulates matrix biosynthesis in chondrocyte/agarose culture. J. Cell Sci. 108(Pt 4):1497–1508, 1995.

    CAS  PubMed  Google Scholar 

  10. Buschmann, M. D., Y. A. Gluzband, A. J. Grodzinsky, J. H. Kimura, and E. B. Hunziker. Chondrocytes in agarose culture synthesize a mechanically functional extracellular matrix. J. Orthop. Res. 10:745–758, 1992.

    Article  CAS  PubMed  Google Scholar 

  11. Byers, B. A., R. L. Mauck, I. E. Chiang, and R. S. Tuan. Transient exposure to transforming growth factor beta 3 under serum-free conditions enhances the biomechanical and biochemical maturation of tissue-engineered cartilage. Tissue Eng. A 14:1821–1834, 2008.

    Article  CAS  Google Scholar 

  12. Campbell, J. J., D. A. Lee, and D. L. Bader. Dynamic compressive strain influences chondrogenic gene expression in human mesenchymal stem cells. Biorheology 43:455–470, 2006.

    PubMed  Google Scholar 

  13. Caplan, A. I. Mesenchymal stem cells. J. Orthop. Res. 9:641–650, 1991.

    Article  CAS  PubMed  Google Scholar 

  14. Clark, C. C., B. S. Tolin, and C. T. Brighton. The effect of oxygen tension on proteoglycan synthesis and aggregation in mammalian growth plate chondrocytes. J. Orthop. Res. 9:477–484, 1991.

    Article  CAS  PubMed  Google Scholar 

  15. Coleman, R. M., N. D. Case, and R. E. Guldberg. Hydrogel effects on bone marrow stromal cell response to chondrogenic growth factors. Biomaterials 28:2077–2086, 2007.

    Article  CAS  PubMed  Google Scholar 

  16. Davisson, T., S. Kunig, A. Chen, R. Sah, and A. Ratcliffe. Static and dynamic compression modulate matrix metabolism in tissue engineered cartilage. J. Orthop. Res. 20:842–848, 2002.

    Article  CAS  PubMed  Google Scholar 

  17. Demarteau, O., D. Wendt, A. Braccini, M. Jakob, D. Schafer, M. Heberer, and I. Martin. Dynamic compression of cartilage constructs engineered from expanded human articular chondrocytes. Biochem. Biophys. Res. Commun. 310:580–588, 2003.

    Article  CAS  PubMed  Google Scholar 

  18. Erickson, I. E., A. H. Huang, C. Chung, R. T. Li, J. A. Burdick, and R. L. Mauck. Differential maturation and structure-function relationships in mesenchymal stem cell- and chondrocyte-seeded hydrogels. Tissue Eng. A 15:1041–1052, 2009.

    Article  CAS  Google Scholar 

  19. Grimshaw, M. J., and R. M. Mason. Bovine articular chondrocyte function in vitro depends upon oxygen tension. Osteoarthritis Cartilage 8:386–392, 2000.

    Article  CAS  PubMed  Google Scholar 

  20. Grodzinsky, A. J., M. E. Levenston, M. Jin, and E. H. Frank. Cartilage tissue remodeling in response to mechanical forces. Annu. Rev. Biomed. Eng. 2:691–713, 2000.

    Article  CAS  PubMed  Google Scholar 

  21. Guilak, F., and V. C. Mow. The mechanical environment of the chondrocyte: a biphasic finite element model of cell-matrix interactions in articular cartilage. J. Biomech. 33:1663–1673, 2000.

    Article  CAS  PubMed  Google Scholar 

  22. Huang, A. H., M. J. Farrell, M. Kim, and R. L. Mauck. Long-term dynamic loading improves the mechanical properties of chondrogenic mesenchymal stem cell-laden hydrogel. Eur. Cell Mater. 19:72–85, 2010.

    CAS  PubMed  Google Scholar 

  23. Huang, C. Y., K. L. Hagar, L. E. Frost, Y. Sun, and H. S. Cheung. Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells. Stem Cells 22:313–323, 2004.

    Article  CAS  PubMed  Google Scholar 

  24. Huang, C. Y., P. M. Reuben, and H. S. Cheung. Temporal expression patterns and corresponding protein inductions of early responsive genes in rabbit bone marrow-derived mesenchymal stem cells under cyclic compressive loading. Stem Cells 23:1113–1121, 2005.

    Article  CAS  PubMed  Google Scholar 

  25. Huang, C. Y. C., P. M. Reuben, G. D’Ppolito, P. C. Schiller, and H. S. Cheung. Chondrogenesis of human bone marrow-derived mesenchymal stem cells in agarose culture. Anat. Record A: Discov. Mol. Cell. Evol. Biol. 278:428–436, 2004.

    Article  Google Scholar 

  26. Ignat’eva, N. Y., N. A. Danilov, S. V. Averkiev, M. V. Obrezkova, V. V. Lunin, and E. N. Sobol. Determination of hydroxyproline in tissues and the evaluation of the collagen content of the tissues. J. Anal. Chem. 62:51–57, 2007.

    Article  Google Scholar 

  27. Iwasaki, M., K. Nakata, H. Nakahara, T. Nakase, T. Kimura, K. Kimata, A. I. Caplan, and K. Ono. Transforming growth factor-beta 1 stimulates chondrogenesis and inhibits osteogenesis in high density culture of periosteum-derived cells. Endocrinology 132:1603–1608, 1993.

    Article  CAS  PubMed  Google Scholar 

  28. Johnstone, B., T. M. Hering, A. I. Caplan, V. M. Goldberg, and J. U. Yoo. In vitro chondrogenesis of bone marrow-derived mesenchymal progenitor cells. Exp. Cell Res. 238:265–272, 1998.

    Article  CAS  PubMed  Google Scholar 

  29. Kafienah, W., and T. J. Sims. Biochemical methods for the analysis of tissue-engineered cartilage. Methods Mol. Biol. 238:217–230, 2004.

    CAS  PubMed  Google Scholar 

  30. Kelly, D. J., and C. R. Jacobs. The role of mechanical signals in regulating chondrogenesis and osteogenesis of mesenchymal stem cells. Birth Defects Res. C: Embryo Today 90:75–85, 2010.

    Article  CAS  Google Scholar 

  31. Kelly, D. J., and P. J. Prendergast. Effect of a degraded core on the mechanical behaviour of tissue-engineered cartilage constructs: a poro-elastic finite element analysis. Med. Biol. Eng. Comput. 42:9–13, 2004.

    Article  CAS  PubMed  Google Scholar 

  32. Kim, Y. J., R. L. Sah, J. Y. Doong, and A. J. Grodzinsky. Fluorometric assay of DNA in cartilage explants using Hoechst 33258. Anal. Biochem. 174:168–176, 1988.

    Article  CAS  PubMed  Google Scholar 

  33. Kim, Y. J., R. L. Sah, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy. Mechanical regulation of cartilage biosynthetic behavior: physical stimuli. Arch. Biochem. Biophys. 311:1–12, 1994.

    Article  CAS  PubMed  Google Scholar 

  34. Kisiday, J., D. D. Frisbie, W. McIlwraith, and A. Grodzinsky. Dynamic compression stimulates proteoglycan synthesis by mesenchymal stem cells in the absence of chondrogenic cytokines. Tissue Eng. A 15:2817–2824, 2009.

    Article  CAS  Google Scholar 

  35. Kisiday, J. D., P. W. Kopesky, C. H. Evans, A. J. Grodzinsky, C. W. McIlwraith, and D. D. Frisbie. Evaluation of adult equine bone marrow- and adipose-derived progenitor cell chondrogenesis in hydrogel cultures. J. Orthop. Res. 26:322–331, 2008.

    Article  CAS  PubMed  Google Scholar 

  36. Knight, M. M., D. A. Lee, and D. L. Bader. The influence of elaborated pericellular matrix on the deformation of isolated articular chondrocytes cultured in agarose. Biochim. Biophys. Acta Mol. Cell Res. 1405:67–77, 1998.

    Article  CAS  Google Scholar 

  37. Knothe Tate, M. L., T. D. Falls, S. H. McBride, R. Atit, and U. R. Knothe. Mechanical modulation of osteochondroprogenitor cell fate. Int. J. Biochem. Cell Biol. 40:2720–2738, 2008.

    Article  CAS  PubMed  Google Scholar 

  38. Lennon, D. P., and A. I. Caplan. Isolation of human marrow-derived mesenchymal stem cells. Exp. Hematol. 34:1604–1605, 2006.

    Article  CAS  PubMed  Google Scholar 

  39. Li, Z., L. Kupcsik, S. J. Yao, M. Alini, and M. J. Stoddart. Chondrogenesis of human bone marrow mesenchymal stem cells in fibrin-polyurethane composites. Tissue Eng. A 15:1729–1737, 2009.

    Article  CAS  Google Scholar 

  40. Li, Z., L. Kupcsik, S. J. Yao, M. Alini, and M. J. Stoddart. Mechanical load modulates chondrogenesis of human mesenchymal stem cells through the TGF-beta pathway. J. Cell. Mol. Med. Epub May 13, 2009. doi:10.1111/j.1582-4934.2009.00780.x.

  41. Lima, E. G., L. Bian, K. W. Ng, R. L. Mauck, B. A. Byers, R. S. Tuan, G. A. Ateshian, and C. T. Hung. The beneficial effect of delayed compressive loading on tissue-engineered cartilage constructs cultured with TGF-beta3. Osteoarthritis Cartilage 15:1025–1033, 2007.

    Article  CAS  PubMed  Google Scholar 

  42. Mackay, A. M., S. C. Beck, J. M. Murphy, F. P. Barry, C. O. Chichester, and M. F. Pittenger. Chondrogenic differentiation of cultured human mesenchymal stem cells from marrow. Tissue Eng. 4:415–428, 1998.

    Article  CAS  PubMed  Google Scholar 

  43. Mauck, R. L., B. A. Byers, X. Yuan, and R. S. Tuan. Regulation of cartilaginous ECM gene transcription by chondrocytes and MSCs in 3D culture in response to dynamic loading. Biomech. Model. Mechanobiol. 6:113–125, 2007.

    Article  CAS  PubMed  Google Scholar 

  44. Mauck, R. L., S. L. Seyhan, G. A. Ateshian, and C. T. Hung. Influence of seeding density and dynamic deformational loading on the developing structure/function relationships of chondrocyte-seeded agarose hydrogels. Ann. Biomed. Eng. 30:1046–1056, 2002.

    Article  PubMed  Google Scholar 

  45. Mauck, R. L., M. A. Soltz, C. C. Wang, D. D. Wong, P. H. Chao, W. B. Valhmu, C. T. Hung, and G. A. Ateshian. Functional tissue engineering of articular cartilage through dynamic loading of chondrocyte-seeded agarose gels. J. Biomech. Eng. 122:252–260, 2000.

    Article  CAS  PubMed  Google Scholar 

  46. Mauck, R. L., X. Yuan, and R. S. Tuan. Chondrogenic differentiation and functional maturation of bovine mesenchymal stem cells in long-term agarose culture. Osteoarthritis Cartilage 14:179–189, 2006.

    Article  CAS  PubMed  Google Scholar 

  47. Miyanishi, K., M. C. Trindade, D. P. Lindsey, G. S. Beaupre, D. R. Carter, S. B. Goodman, D. J. Schurman, and R. L. Smith. Dose- and time-dependent effects of cyclic hydrostatic pressure on transforming growth factor-beta3-induced chondrogenesis by adult human mesenchymal stem cells in vitro. Tissue Eng. 12:2253–2262, 2006.

    Article  CAS  PubMed  Google Scholar 

  48. Miyanishi, K., M. C. Trindade, D. P. Lindsey, G. S. Beaupre, D. R. Carter, S. B. Goodman, D. J. Schurman, and R. L. Smith. Effects of hydrostatic pressure and transforming growth factor-beta 3 on adult human mesenchymal stem cell chondrogenesis in vitro. Tissue Eng. 12:1419–1428, 2006.

    Article  CAS  PubMed  Google Scholar 

  49. Mouw, J. K., J. T. Connelly, C. G. Wilson, K. E. Michael, and M. E. Levenston. Dynamic compression regulates the expression and synthesis of chondrocyte-specific matrix molecules in bone marrow stromal cells. Stem Cells 25:655–663, 2007.

    Article  CAS  PubMed  Google Scholar 

  50. Ng, K. W., R. L. Mauck, C. C. Wang, T. A. Kelly, M. M. Ho, F. Hui Chen, G. A. Ateshian, and C. T. Hung. Duty cycle of deformational loading influences the growth of engineered articular cartilage. Cell. Mol. Bioeng. 2:386–394, 2009.

    Article  PubMed  Google Scholar 

  51. Nishimura, K., L. A. Solchaga, A. I. Caplan, J. U. Yoo, V. M. Goldberg, and B. Johnstone. Chondroprogenitor cells of synovial tissue. Arthritis Rheum. 42:2631–2637, 1999.

    Article  CAS  PubMed  Google Scholar 

  52. Obradovic, B., R. L. Carrier, G. Vunjak-Novakovic, and L. E. Freed. Gas exchange is essential for bioreactor cultivation of tissue engineered cartilage. Biotechnol. Bioeng. 63:197–205, 1999.

    Article  CAS  PubMed  Google Scholar 

  53. Obradovic, B., J. H. Meldon, L. E. Freed, and G. Vunjak-Novakovic. Glycosaminoglycan deposition in engineered cartilage: experiments and mathematical model. Aiche J. 46:1860–1871, 2000.

    Article  CAS  Google Scholar 

  54. Palmer, G. D., A. Steinert, A. Pascher, E. Gouze, J. N. Gouze, O. Betz, B. Johnstone, C. H. Evans, and S. C. Ghivizzani. Gene-induced chondrogenesis of primary mesenchymal stem cells in vitro. Mol. Ther. 12:219–228, 2005.

    Article  CAS  PubMed  Google Scholar 

  55. Palmoski, M. J., and K. D. Brandt. Effects of static and cyclic compressive loading on articular cartilage plugs in vitro. Arthritis Rheum. 27:675–681, 1984.

    Article  CAS  PubMed  Google Scholar 

  56. Park, S. H., W. Y. Sim, S. W. Park, S. S. Yang, B. H. Choi, S. R. Park, K. Park, and B. H. Min. An electromagnetic compressive force by cell exciter stimulates chondrogenic differentiation of bone marrow-derived mesenchymal stem cells. Tissue Eng. 12:3107–3117, 2006.

    Article  CAS  PubMed  Google Scholar 

  57. Peterson, L., T. Minas, M. Brittberg, A. Nilsson, E. Sjogren-Jansson, and A. Lindahl. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin. Orthop. Relat. Res. 374:212–234, 2000.

    Article  PubMed  Google Scholar 

  58. Pittenger, M. F., A. M. Mackay, S. C. Beck, R. K. Jaiswal, R. Douglas, J. D. Mosca, M. A. Moorman, D. W. Simonetti, S. Craig, and D. R. Marshak. Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147, 1999.

    Article  CAS  PubMed  Google Scholar 

  59. Sah, R. L., Y. J. Kim, J. Y. Doong, A. J. Grodzinsky, A. H. Plaas, and J. D. Sandy. Biosynthetic response of cartilage explants to dynamic compression. J. Orthop. Res. 7:619–636, 1989.

    Article  CAS  PubMed  Google Scholar 

  60. Tallheden, T., C. Bengtsson, C. Brantsing, E. Sjogren-Jansson, L. Carlsson, L. Peterson, M. Brittberg, and A. Lindahl. Proliferation and differentiation potential of chondrocytes from osteoarthritic patients. Arthritis Res. Ther. 7:R560–R568, 2005.

    Article  CAS  PubMed  Google Scholar 

  61. Terraciano, V., N. Hwang, L. Moroni, H. B. Park, Z. Zhang, J. Mizrahi, D. Seliktar, and J. Elisseeff. Differential response of adult and embryonic mesenchymal progenitor cells to mechanical compression in hydrogels. Stem Cells 25:2730–2738, 2007.

    Article  CAS  PubMed  Google Scholar 

  62. Thorpe, S. D., C. T. Buckley, T. Vinardell, F. J. O’Brien, V. A. Campbell, and D. J. Kelly. Dynamic compression can inhibit chondrogenesis of mesenchymal stem cells. Biochem. Biophys. Res. Commun. 377:458–462, 2008.

    Article  CAS  PubMed  Google Scholar 

  63. Tuan, R. S., G. Boland, and R. Tuli. Adult mesenchymal stem cells and cell-based tissue engineering. Arthritis Res. Ther. 5:32–45, 2003.

    Article  CAS  PubMed  Google Scholar 

  64. Wagner, D. R., D. P. Lindsey, K. W. Li, P. Tummala, S. E. Chandran, R. L. Smith, M. T. Longaker, D. R. Carter, and G. S. Beaupre. Hydrostatic pressure enhances chondrogenic differentiation of human bone marrow stromal cells in osteochondrogenic medium. Ann. Biomed. Eng. 36:813–820, 2008.

    Article  PubMed  Google Scholar 

  65. Wakitani, S., T. Goto, S. J. Pineda, R. G. Young, J. M. Mansour, A. I. Caplan, and V. M. Goldberg. Mesenchymal cell-based repair of large, full-thickness defects of articular cartilage. J. Bone Joint Surg. Am. 76:579–592, 1994.

    CAS  PubMed  Google Scholar 

  66. Wang, Q. G., J. L. Magnay, B. Nguyen, C. R. Thomas, Z. Zhang, A. J. El Haj, and N. J. Kuiper. Gene expression profiles of dynamically compressed single chondrocytes and chondrons. Biochem. Biophys. Res. Commun. 379:738–742, 2009.

    Article  CAS  PubMed  Google Scholar 

  67. Williams, C. G., T. K. Kim, A. Taboas, A. Malik, P. Manson, and J. Elisseeff. In vitro chondrogenesis of bone marrow-derived mesenchymal stem cells in a photopolymerizing hydrogel. Tissue Eng. 9:679–688, 2003.

    Article  CAS  PubMed  Google Scholar 

  68. Yoo, J. U., T. S. Barthel, K. Nishimura, L. Solchaga, A. I. Caplan, V. M. Goldberg, and B. Johnstone. The chondrogenic potential of human bone-marrow-derived mesenchymal progenitor cells. J. Bone Joint Surg. Am. 80:1745–1757, 1998.

    CAS  PubMed  Google Scholar 

  69. Zuk, P. A., M. Zhu, H. Mizuno, J. Huang, J. W. Futrell, A. J. Katz, P. Benhaim, H. P. Lorenz, and M. H. Hedrick. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng. 7:211–228, 2001.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Funding was provided by Science Foundation Ireland (07-RFP-ENMF142 and the President of Ireland Young Researcher Award: 08/YI5/B1336).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel J. Kelly.

Additional information

Associate Editor Eric M. Darling oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thorpe, S.D., Buckley, C.T., Vinardell, T. et al. The Response of Bone Marrow-Derived Mesenchymal Stem Cells to Dynamic Compression Following TGF-β3 Induced Chondrogenic Differentiation. Ann Biomed Eng 38, 2896–2909 (2010). https://doi.org/10.1007/s10439-010-0059-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-010-0059-6

Keywords

Navigation