Skip to main content

Advertisement

Log in

The key role of calreticulin in immunomodulation induced by chemotherapeutic agents

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

It has recently been shown that certain chemotherapeutic agents can improve host immune responses. The present study aimed to demonstrate the mechanism by which chemotherapeutic agents modify the tumor microenvironment and induce tumor-specific immune responses.

Methods

Three mouse cancer cell lines [CT26 mouse colon cancer cells, B16 melanoma cells and Lewis lung carcinoma (LLC)], 5 human carcinoma cell lines (human esophageal squamous cell carcinoma cell lines TE8 and HEC46 and the human pancreatic carcinoma cell lines PK-9, AsPC-1 and SUIT-2) and 5 chemotherapeutic agents [mitoxantrone (MIT), mitomycin C(MMC), 5-fluorouracil (5FU), camptothecin (CPT-11) and cisplatin (CDDP)] that are frequently used in a clinical setting for cancer treatment were utilized to investigate the surface expression level of calreticulin and HLA class I after exposure to chemotherapeutic agents.

Results

Increased calreticulin (CRT) expression on the surface of mouse cell lines and, moreover, increased surface expression levels of both CRT and HLA class I in all human cell lines were observed in cells treated by the chemotherapeutic agents as compared with non-treated cells. The surface expression level of CRT was significantly correlated with the HLA class I expression level in all human cell lines.

Conclusions

In conclusion, chemotherapeutic drugs can improve the immunogenicity of cancer cells in a cell-specific manner through the mechanism of translocation of CRT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Marsh R de W, Alonzo M, Bajaj S et al (2012) Comprehensive review of the diagnosis and treatment of biliary tract cancer 2012. Part II: multidisciplinary management. J Surg Oncol 106:339–345

    Article  Google Scholar 

  2. Weber GF, Rosenberg R, Murphy JE et al (2012) Multimodal treatment strategies for locally advanced rectal cancer. Expert Rev Anticancer Ther 12:481–494

    Article  CAS  PubMed  Google Scholar 

  3. Kageyama S, Kitano S, Hirayama M et al (2008) Humoral immune responses in patients vaccinated with 1-146 HER2 protein complexed with cholesteryl pullulan nanogel. Cancer Sci 99:601–607

    Article  CAS  PubMed  Google Scholar 

  4. Karbach J, Neumann A, Brand K et al (2012) Phase I clinical trial of mixed bacterial vaccine (Coley’s toxins) in patients with NY-ESO-1 expressing cancers: immunological effects and clinical activity. Clin Cancer Res 18:5449–5459

    Article  CAS  PubMed  Google Scholar 

  5. Tsuboi A, Oka Y, Kyo T et al (2012) Long-term WT1 peptide vaccination for patients with acute myeloid leukemia with minimal residual disease. Leukemia 26:1410–1413

    Article  CAS  PubMed  Google Scholar 

  6. Obeid M, Tesniere A, Ghiringhelli F et al (2007) Calreticulin exposure dictates the immunogenicity of cancer cell death. Nat Med 13:54–61

    Article  CAS  PubMed  Google Scholar 

  7. Zitvogel L, Kepp O, Kroemer G (2011) Immune parameters affecting the efficacy of chemotherapeutic regimens. Nat Rev Clin Oncol 8:151–160

    Article  CAS  PubMed  Google Scholar 

  8. Brode S, Cooke A (2008) Immune-potentiating effects of the chemotherapeutic drug cyclophosphamide. Crit Rev Immunol 28:109–126

    Article  CAS  PubMed  Google Scholar 

  9. Curtin NJ (2012) DNA repair dysregulation from cancer driver to therapeutic target. Nat Rev Cancer 12:801–817

    Article  CAS  PubMed  Google Scholar 

  10. Galluzzi L, Senovilla L, Zitvogel L et al (2012) The secret ally: immunostimulation by anticancer drugs. Nat Rev Drug Discov 11:215–233

    Article  CAS  PubMed  Google Scholar 

  11. Berraondo P, Umansky V, Melero I (2012) Changing the tumor microenvironment: new strategies for immunotherapy. Cancer Res 72:5159–5164

    Article  CAS  PubMed  Google Scholar 

  12. Ma Y, Conforti R, Aymeric L et al (2011) How to improve the immunogenicity of chemotherapy and radiotherapy. Cancer Metastasis Rev 30:71–82

    Article  CAS  PubMed  Google Scholar 

  13. Cho Y, Miyamoto M, Kato K et al (2003) CD4+ and CD8+ T cells cooperate to improve prognosis of patients with esophageal squamous cell carcinoma. Cancer Res 63:1555–1559

    CAS  PubMed  Google Scholar 

  14. Hiraoka K, Miyamoto M, Cho Y et al (2006) Concurrent infiltration by CD8+ T cells and CD4+ T cells is a favourable prognostic factor in non-small-cell lung carcinoma. Br J Cancer 94:275–280

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  15. Fukunaga A, Miyamoto M, Cho Y et al (2004) CD8+ tumor-infiltrating lymphocytes together with CD4+ tumor-infiltrating lymphocytes and dendritic cells improve the prognosis of patients with pancreatic adenocarcinoma. Pancreas 28:26–31

    Article  Google Scholar 

  16. Tsuchikawa T, Miyamoto M, Yamamura Y et al (2012) The immunological impact of neoadjuvant chemotherapy on the tumor microenvironment of esophageal squamous cell carcinoma. Ann Surg Oncol 19:1713–1719

    Article  PubMed  Google Scholar 

  17. Tsuchikawa T, Hirano S, Tanaka E et al (2013) Novel aspects of preoperative chemoradiation therapy improving anti-tumor immunity in pancreatic cancer. Cancer Sci 104:531–535

    Article  CAS  PubMed  Google Scholar 

  18. Tanaka K, Tsuchikawa T, Miyamoto M et al (2012) Down-regulation of human leukocyte antigen class I heavy chain in tumors is associated with a poor prognosis in advanced esophageal cancer patients. Int J Oncol 40:965–974

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Del Cid N, Jeffery E, Rizvi SM et al (2010) Modes of calreticulin recruitment to the major histocompatibility complex class I assembly pathway. J Biol Chem 12:4520–4535

    Google Scholar 

  20. Raghavan M, Del Cid N, Rizvi SM et al (2008) MHC class I assembly: out and about. Trends Immunol 29:436–443

    Article  PubMed Central  PubMed  Google Scholar 

  21. Rizvi SM, Del Cid N, Lybarger L et al (2011) Distinct functions for the glycans of tapasin and heavy chains in the assembly of MHC class I molecules. J Immunol 186:2309–2320

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Mimura K, Shiraishi K, Mueller A et al (2013) The MAPK pathway is a predominant regulator of HLA-A expression in esophageal and gastric cancer. J Immunol 191:6261–6272

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takahiro Tsuchikawa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamamura, Y., Tsuchikawa, T., Miyauchi, K. et al. The key role of calreticulin in immunomodulation induced by chemotherapeutic agents. Int J Clin Oncol 20, 386–394 (2015). https://doi.org/10.1007/s10147-014-0719-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-014-0719-x

Keywords

Navigation