Skip to main content

Advertisement

Log in

Surgical treatment for symptomatic non-ossifying fibromas of the lower extremity with calcium sulfate grafts in skeletally immature patients

  • Original Article • PAEDIATRICS - TUMORS
  • Published:
European Journal of Orthopaedic Surgery & Traumatology Aims and scope Submit manuscript

Abstract

Background

Non-ossifying fibromas (NOFs) are common benign bone lesions found in children and adolescents. They usually involve metaphysis of long bones, tend to gradually disappear with age and usually do not require surgery, while they are not associated with pathological fractures. The aim of this study was to evaluate the outcome and efficacy of a single-stage procedure, comprising curettage of the lesion and calcium sulfate pellet (CaSP) grafting, in skeletally immature patients with large, symptomatic NOF of the lower extremity, and the possible limitations of the procedure.

Methods

Nine skeletally immature patients with symptomatic NOF of the lower extremity were treated between 2013 and 2016. Details of age, history of presentation, location and size (in mm) of the lesion, histology and follow-up details were recorded. Lesions were classified in Ritschl radio-morphological stages. CaSP integration was assessed by Irwing’s classification. The average size of lesions was 54.6 mm in length (range 31–95). All lesions were symptomatic. The average bone expansion in relation to the bone diameter was 67.4% in the transversal plane (range 31–100) and 77.8% in the sagittal plane (range 55–100). Mean patient age at time of treatment was 9.8 years (range 7–14); mean follow-up was 2 years (range 2–4). All the patients were symptomatic, and 8 out of 9 (89%) NOFs were Ritschl type B. All the patients were treated surgically with a single-step approach, as described.

Results

On average, 86 mL of CaSPs was used per case (range 10–250). None of the patients required internal fixation. At last follow-up visit, CaSPs were fully incorporated in all the patients according to Irwing’s classification (Stage 3). No serous drainage from wounds was recorded in any of the patients. No cases of pathological fracture, bone deformity, growth arrest or growth disturbance or infection were observed. At last follow-up visit, all the patients had resumed full sport and daily life activities.

Conclusions

CaSPs offer a safe, cheap, convenient alternative to the autograft as an implant substitute that helps regeneration of bone in the defects produced by curettage of large, symptomatic NOFs. Chemical cauterization of bone walls does not interfere with CaSP integration into bone tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mankin HJ, Trahan CA, Fondren G, Mankin CJ (2009) Non-ossifying fibroma, fibrous cortical defect and Jaffe–Campanacci syndrome: a biologic and clinical review. Chir Organ Mov 93:1–7. doi:10.1007/s12306-009-0016-4

    Google Scholar 

  2. Jaffe HL, Lichtenstein L (1942) Non-osteogenic fibroma of the bone. Am J Pathol 18:205–221

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Phemister D (1929) Chronic fibrous osteomyelitis. Ann Surg 90:756–764

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Mallet JF, Rigault P, Padovani JP, Touzet P, Nezelof C (1980) Non-ossifying fibroma in children: a surgical condition? Chir Pediatr 21:179–189

    CAS  PubMed  Google Scholar 

  5. Herget GW, Mauer D, Krauß T, El Tayeh A, Uhl M, Südkamp NP, Hauschild O (2016) Non-ossifying fibroma: natural history with an emphasis on a stage-related growth, fracture risk and the need for follow-up. BMC Musculoskelet Disord 17:147. doi:10.1186/s12891-016-1004-0

    Article  PubMed  PubMed Central  Google Scholar 

  6. Cherix S, Bildé Y, Becce F, Letovanec I, Rüdiger HA (2014) Multiple non-ossifying fibromas as a cause of pathological femoral fracture in Jaffe–Campanacci syndrome. BMC Musculoskelet Disord 15:218. doi:10.1186/1471-2474-15-218

    Article  PubMed  PubMed Central  Google Scholar 

  7. Arata MA, Peterson HA, Dahlin DC (1981) Pathological fractures through non-ossifying fibromas. Review of the Mayo Clinic experience. J Bone Joint Surg Am 63:980–988

    Article  CAS  PubMed  Google Scholar 

  8. Canavese F, Samba A, Rousset M (2016) Pathological fractures in children: diagnosis and treatment options. Orthop Traumatol Surg Res 102(Suppl. 1):S149–S159. doi:10.1016/j.otsr.2015.05.010

    Article  CAS  PubMed  Google Scholar 

  9. Kucukkaya M, Kabukcuoglu Y, Tezer M, Kuzqun U (2002) Management of childhood chronic tibial osteomyelitis with the Ilizarov method. J Pediatr Orthop 22(5):632–637. doi:10.1097/01.BPO.00000023145.69745.2E

    PubMed  Google Scholar 

  10. Bar-On E, Weigl DM, Bor N, Becker T, Katz K, Mercado E, Livni G (2010) Chronic osteomyelitis in children: treatment by intramedullary reaming and antibiotic-impregnated cement rods. J Pediatr Orthop 30:508–513. doi:10.1097/BPO.0b013e3181e00e34

    Article  PubMed  Google Scholar 

  11. Morrison M, Herman M (2013) Hip septic arthritis and other pediatric musculoskeletal infections in the era of methicillin-resistant Staphylococcus aureus. AAOS Instr Course Lect 36:405–414

    Google Scholar 

  12. Betsy M, Kupersmith LM, Springfield DS (2004) Metaphyseal fibrous defects. J Am Acad Orthop Surg 12(2):89–95

    Article  PubMed  Google Scholar 

  13. Easley ME, Kneisl JS (1997) Pathologic fractures through non-ossifying fibromas: Is prophylactic treatment warranted? J Pediatr Orthop 17(6):808–813. doi:10.1097/00004694-199711000-00021

    CAS  PubMed  Google Scholar 

  14. Ritschl P, Karnel F, Hajek P (1988) Fibrous metaphyseal defects—determination of their origin and natural history using radiomorphological study. Skelet Radiol 17:8–15

    Article  CAS  Google Scholar 

  15. Nievelstein RA, van Dam IM, van der Molen AJ (2010) Multidetector CT in children: current concepts and dose reduction strategies. Pediatr Radiol 40(8):1324–1344. doi:10.1007/s00247-010-1714-7

    Article  PubMed  PubMed Central  Google Scholar 

  16. Irwin RB, Bernhard M, Biddinger A (2001) Coralline hydroxyapatite as bone substitute in orthopedic oncology. Am J Orthop Belle Mead NJ 30:544–550

    CAS  PubMed  Google Scholar 

  17. Caffey J (1955) On fibrous defects in cortical walls of growing tubular bones: their radiologic appearance, structure, prevalence, natural course, and diagnostic significance. Adv Pediatr 7:13–51

    CAS  PubMed  Google Scholar 

  18. Ngo THN, Bize P, Letovanec I, Cherix S, Choong PFM, Rüdiger HA (2015) Percutaneous cryoablation for a symptomatic non-ossifying fibroma. A case report. Diagn Interv Imaging 96:107–109. doi:10.1016/j.diii.2014.04.009

    Article  CAS  PubMed  Google Scholar 

  19. Hudson TM, Stiles RG, Monson DK (1993) Fibrous lesions of bone. Radiol Clin N Am 31(2):279–297

    CAS  PubMed  Google Scholar 

  20. Marks KE, Bauer TW (1989) Fibrous tumors of bone. Orthop Clin N Am 20:377

    CAS  Google Scholar 

  21. Schajowicz F (1994) Tumors and tumorlike lesions of bone. Springer, New York

    Book  Google Scholar 

  22. Drennan DB, Maylahn DJ, Fahey JJ (1974) Fractures through large non-ossifying fibromas. Clin Orthop 103:82–88

    Article  Google Scholar 

  23. Hoeffel C, Panuel M, Plenat F, Mainard L, Hoeffel JC (1999) Pathological fracture in non-ossifying fibroma with histological features simulating aneurysmal bone cyst. Eur Radiol 9(4):669–671. doi:10.1007/s003300050730

    Article  CAS  PubMed  Google Scholar 

  24. Hase T, Miki T (2000) Autogenous bone marrow graft to non-ossifying fibroma with a pathologic fracture. Arch Orthop Trauma Surg 120:458–459. doi:10.1007/s004029900100

    Article  CAS  PubMed  Google Scholar 

  25. Biermann JS (2002) Common benign lesions of bone in children and adolescents. J Pediatr Orthop 22(2):268–273. doi:10.1097/00004694-200203000-00028

    PubMed  Google Scholar 

  26. Jee WH, Choe BY, Kang HS et al (1998) Nonossifying fibroma: characteristics at MR imaging with pathologic correlation. Radiology 209(1):197–202. doi:10.1148/radiology.209.1.9769832

    Article  CAS  PubMed  Google Scholar 

  27. Shimal A, Davies AM, James SLJ, Grimer RJ (2010) Fatigue-type stress fractures of the lower limb associated with fibrous cortical defects/non-ossifying fibromas in the skeletally immature. Clin Radiol 65:382–386. doi:10.1016/j.crad.2010.01.014

    Article  CAS  PubMed  Google Scholar 

  28. Quint U, Muller RT, Muller G (1998) Characteristics of phenol. Instillation in intralesional tumor excision of chondroblastoma, osteoclastoma and enchondroma. Arch Orthop Trauma Surg 117:43–46. doi:10.1007/BF00703438

    Article  CAS  PubMed  Google Scholar 

  29. Georgiannos D, Lampridis V, Bisbinas I (2015) Phenolization and coralline hydroxyapatite grafting following meticulous curettage for the treatment of enchondroma of the hand. A case series of 82 patients with 5-year follow-up. Hand 10:111–115. doi:10.1007/s11552-014-9674-2

    Article  PubMed  Google Scholar 

  30. Foster RCB, Tavas JM (2014) Bone and soft tissue ablation. Semin Interv Radiol 31(2):167–179. doi:10.1055/s-0034-1373791

    Article  Google Scholar 

  31. Shiels WE II, Mayerson JL (2013) Percutaneous doxycycline treatment of aneurismal bone cysts with low recurrence rate: a preliminary report. Clin Orthop Rel Res 471(8):2675–2683. doi:10.1007/s11999-013-3043-2

    Article  Google Scholar 

  32. Kumar CY, Menon J, Patro DK (2013) Calcium sulfate as bone graft substitute in the treatment of osseous bone defects: a prospective study. J Clin Diagn Res 7(12):2926–2928. doi:10.7860/JCDR/2013/6404.3791

    Google Scholar 

  33. Kelly CM, Wilkins RM, Gitelis S (2001) The use of surgical grade calcium sulfate as a bone graft substitute. Clin Orthop Rel Res 382:42–50

    Article  Google Scholar 

  34. Gitelis S, Piasecki P (2001) Use of a calcium sulfate-based bone graft substitute for benign bone lesions. Orthopaedics 24(2):162–166

    CAS  Google Scholar 

  35. Dormans JP, Sankar WN, Moroz L, Erol B (2005) Percutaneous intramedullary decompression, curettage, and grafting with medical-grade calcium sulfate pellets for unicameral bone cysts in children: a new minimally invasive technique. J Pediatr Orthop 25(6):804–811. doi:10.1097/01.bpo.0000184647.03981.a5

    Article  PubMed  Google Scholar 

  36. Campanacci M (1999) Bone and soft tissue tumors. Springer, New York

    Book  Google Scholar 

  37. Lee GH, Khoury JG, Bell JE, Buckwalter JA (2002) Adverse reactions to OsteoSet bone graft substitute, the incidence in a consecutive series. Iowa Orthop J 22:35–38

    PubMed  PubMed Central  Google Scholar 

  38. Beuerlein MJ, McKee MD (2010) Calcium sulfates: What is the evidence? J Orthop Trauma 24(Suppl. 1):S46–S51. doi:10.1097/BOT.0b013e3181cec48e

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Federico Canavese.

Ethics declarations

Conflict of interest

All authors have no conflict of interests.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Declaration of Helsinki and its later amendments or comparable ethical standards.

Informed consent

No patients were involved. This is a retrospective study of patient’s data, and an IRB approval was obtained.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreacchio, A., Alberghina, F., Testa, G. et al. Surgical treatment for symptomatic non-ossifying fibromas of the lower extremity with calcium sulfate grafts in skeletally immature patients. Eur J Orthop Surg Traumatol 28, 291–297 (2018). https://doi.org/10.1007/s00590-017-2028-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00590-017-2028-3

Keywords

Navigation