Skip to main content

Advertisement

Log in

Detection and monitoring of cardiotoxicity—what does modern cardiology offer?

  • Review Article
  • Published:
Supportive Care in Cancer Aims and scope Submit manuscript

Abstract

Introduction

With new anticancer therapies, many patients can have a long life expectancy. Treatment-related comorbidities become an issue for cancer survivors. Cardiac toxicity remains an important side effect of anticancer therapies. Myocardial dysfunction can become apparent early or long after end of therapy and may be irreversible. Detection of cardiac injury is crucial since it may facilitate early therapeutic measures. Traditionally, chemotherapy-induced cardiotoxicity has been detected by measuring changes in left ventricular ejection fraction. This parameter is, however, insensitive to subtle changes in myocardial function as they occur in early cardiotoxicity.

Discussion

This review will discuss conventional and modern cardiologic approaches of assessing myocardial function. It will focus on Doppler myocardial imaging, a method which allows to sensitively measure myocardial function parameters like myocardial velocity, deformation (strain), or deformation rate (strain rate) and which has been shown to reliably detect early abnormalities in both regional and global myocardial function in an early stage.Other newer echocardiographic function estimators are based on automated border detection algorithms and ultrasonic integrated backscatter analysis. A further technique to be discussed is dobutamine stress echocardiography. The use of new biomarkers like B-type natriuretic peptide and troponin and less often used imaging techniques like magnetic resonance imaging and computed tomography will also be mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Achenbach S, Daniel WG (2007) Current role of cardiac computed tomography. Herz 32(2):97–107

    Article  PubMed  Google Scholar 

  2. Adams MJ, Lipshultz SE (2005) Pathophysiology of anthracycline- and radiation-associated cardiomyopathies: implications for screening and prevention. Pediatr Blood Cancer 44(7):600–606

    Article  PubMed  Google Scholar 

  3. Angermann CE, Nassau K, Stempfle HU, Kruger TM, Drewello R, Junge R (1997) Recognition of acute cardiac allograft rejection from serial integrated backscatter analyses in human orthotopic heart transplant recipients: comparison with conventional echocardiography. Circulation 95:140–150

    PubMed  CAS  Google Scholar 

  4. Antman K, Marks AR (2005) The patient with cardiovascular disease and cancer. In: Zipes DP, Libby P, Bonow RO, Braunwald E (eds) Braunwald’s heart disease: a textbook of cardiovascular medicine, 7th edn. Elsevier Saunders, Philadelphia, pp 2117–2129

    Google Scholar 

  5. Batist G, Ramakriskan G, Rao CS, Chandrasekharan A, Gutheil J, Guthrie T, Shah P, Chojasteh A, Nair MK, Hoelzer K, Tkaczuk K, Park YC, Lee LV (2001) Reduced cardiotoxicity and preserved antitumor efficacy of liposome-encapsulated doxorubicin and cyclophosphamide compared with conventional doxorubicin and cyclophosphamide in a randomized multicenter trial of metastatic breast cancer. J Clin Oncol 19(5):1444–1454

    PubMed  CAS  Google Scholar 

  6. Bonadonna G, Monfardini S (1969) Cardiac toxicity of daunorubicin. Lancet 1(7599):837

    Article  PubMed  CAS  Google Scholar 

  7. Bountioukos M, Doorduijn JK, Roelandt JR, Vourvouri EC, Bax JJ, Schinkel AF, Kertai MD, Sonneveld P, Poldermans D (2003) Repetitive dobutamine stress echocardiography for the prediction of anthracycline cardiotoxicity. Eur J Echocardiogr 4(4):300–305

    Article  PubMed  CAS  Google Scholar 

  8. Buyse G, Mertens L, Di Salvo G, Matthijs I, Weidemann F, Eyskens B, Goossens W, Goemans N, Sutherland GR, Van Hove JL (2003) Idebenone treatment in Friedreich’s ataxia: neurological, cardiac, and biochemical monitoring. Neurology 60:1679–1681

    Article  PubMed  CAS  Google Scholar 

  9. Cardinale D, Sandri MT, Colombo A, Colombo N, Boeri M, Lamantia G, Civelli M, Peccatori F, Martinelli G, Fiorentini C, Cipolla CM (2004) Prognostic value of troponin I in cardiac risk stratification of cancer patients undergoing high-dose chemotherapy. Circulation 109:2749–2754

    Article  PubMed  CAS  Google Scholar 

  10. Civelli M, Cardinale D, Martinoni A, Lamantia G, Colombo N, Colombo A, Gandini S, Martinelli G, Fiorentini C, Cipolla CM (2006) Early reduction in left ventricular contractile reserve detected by dobutamine stress echo predicts high-dose chemotherapy-induced cardiac toxicity. Int J Cardiol 111(1):120–126

    Article  PubMed  Google Scholar 

  11. D’hooge J, Heimdal A, Jamal F, Kukulski T, Bijnens B, Rademakers F, Hatle L, Suetens P, Sutherland GR (2000) Regional strain and strain rate measurements by cardiac ultrasound: principles, implementation and limitations. Eur J Echocardiogr 1:154–170

    Article  PubMed  CAS  Google Scholar 

  12. Daugaard G, Lassen U, Bie P, Pedersen EB, Jensen KT, Abildgaard U, Hesse B, Kjaer A (2005) Natriuretic peptides in the monitoring of anthracycline induced reduction in left ventricular ejection fraction. Eur J Heart Fail 7(1):87–93

    Article  PubMed  CAS  Google Scholar 

  13. de Lemos JA, McGuire DK, Drazner MH (2003) B-type natriuretic peptide in cardiovascular disease. Lancet 362:316–322

    Article  PubMed  CAS  Google Scholar 

  14. Di Bello V, Talarico L, Picano E, Di Muro C, Landini L, Paterni M et al (1995) Increased echodensity of myocardial wall in the diabetic heart: an ultrasound tissue characterization study. J Am Coll Cardiol 25:1408–1415

    Article  PubMed  Google Scholar 

  15. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG) (2005) Effects of radiotherapy and of differences in the extent of surgery for early breast cancer on local recurrence and 15-year survival: an overview of the randomised trials. Lancet 366:2087–2106

    Google Scholar 

  16. Elbl L, Hrstkova H, Tomaskova I, Michalek J (2006) Late anthracycline cardiotoxicity protection by dexrazoxane (ICRF-187) in pediatric patients: echocardiographic follow-up. Support Care Cancer 14:128–136

    Article  PubMed  Google Scholar 

  17. Ewer MS, Vooletich MT, Durand JB, Voods ML, Davis JR, Valero V, Lenihan DJ (2005) Reversibility of trastuzumab related cardiotoxicity: new insights based on clinical course and response to medical treatment. J Clin Oncol 23:7820–7826

    Article  PubMed  CAS  Google Scholar 

  18. Ford P, Chatziioannou S, Moore H, Dhekne R (2001) Overestimation of the LVEF by quantitative gated SPECT in simulated left ventricles. J Nucl Med 42:454–459

    PubMed  CAS  Google Scholar 

  19. Friedman MA, Bozdech MJ, Billingham ME, Rider AK (1978) Doxorubicin cardiotoxicity. Serial endomyocardial biopsies and systolic time intervals. JAMA 240:1603–1606

    Article  PubMed  CAS  Google Scholar 

  20. Ganame J, Claus P, Eyskens B, Uyttebroeck A, Renard M, D’hooge J, Gewillig M, Bijnens B, Sutherland GR, Mertens L (2007) Acute cardiac functional and morphological changes after anthracycline infusions in children. Am J Cardiol 99:974–977

    Article  PubMed  CAS  Google Scholar 

  21. Ganame J, Claus P, Uyttebroeck A, Renard M, D’hooge J, Bijnens BH, Sutherland GR, Eyskens B, Mertens L (2007) Myocardial dysfunction late after low dose anthracycline treatment in asymptomatic pediatric patients. J Am Soc Echocardiogr 20(12):1351–1358

    Article  PubMed  Google Scholar 

  22. Gottlieb S, Keren A, Khoury Z, Stern S (1995) Findings of automatic border detection in subjects with left ventricular diastolic dysfunction by Doppler echocardiography. J Am Soc Echocardiogr 8:149–161

    Article  PubMed  CAS  Google Scholar 

  23. Hashimoto I, Ichida F, Miura M, Kanegane M, Uese K, Hamamichi Y, Misaki T, Koizumi S, Miyawaki T (1999) Automatic border detection identifies subclinical anthracycline cardiotoxicity in children with malignancy. Circulation 99:2367–2370

    PubMed  CAS  Google Scholar 

  24. Hoffmann R, von Bardeleben S, Kasprzak JD, Borges AC, ten Cate F, Firschke C, Lafitte S, Al-Saadi N, Kuntz-Henner S, Horstick G, Greis C, Engelhardt M, Vanoverschelde JL, Becher H (2006) Analysis of regional left ventricular function by cineventriculography, cardiac magnetic resonance imaging and unenhanced and contrast enhanced echocardiography. A multicenter comparison of methods. J Am Coll Cardiol 47(1):121–128

    Article  PubMed  Google Scholar 

  25. Ioannidis JP, Trikalinos TA, Danias PG (2002) Electrocardiogram gated single-photon emission computed tomography versus cardiac magnetic resonance imaging for the assessment of left ventricular volumes and ejection fraction: a meta-analysis. J Am Coll Cardiol 39:2059–2068

    Article  PubMed  Google Scholar 

  26. Jurcut R, Ector J, Erven K, Choi HF, Voigt JU (2007) Radiotherapy effects on systolic myocardial function detected by strain rate imaging in a left-breast cancer patient. Eur Heart J 28(24):2966

    Article  PubMed  Google Scholar 

  27. Kapusta L, Thijssen JM, Groot-Loonen J, Antonius T, Mulder J, Daniëls O (2000) Tissue Doppler imaging in detection of myocardial dysfunction in survivors of childhood cancer treated with anthracyclines. Ultrasound Med Biol 26(7):1099–1108

    Article  PubMed  CAS  Google Scholar 

  28. Kapusta L, Thijssen JM, Groot-Loonen J, van Druten JA, Daniëls O (2001) Discriminative ability of conventional echocardiography and tissue Doppler imaging techniques for the detection of subclinical cardiotoxic effects of treatment with anthracyclines. Ultrasound Med Biol 27(12):1605–1614

    Article  PubMed  CAS  Google Scholar 

  29. Kim RJ, Wu E, Rafael A, Chen E-L, Parker MA, Simonetti O, Klocke FJ, Bonow RO, Judd RM (2000) The use of contrast-enhanced magnetic resonance imaging to identify reversible myocardial dysfunction. N Engl J Med 343(20):1445–1453

    Article  PubMed  CAS  Google Scholar 

  30. Kondo C, Fukushima K, Kusakabe K (2003) Measurement of left ventricular volumes and ejection fraction by quantitative gated SPET, contrast ventriculography and magnetic resonance imaging: a meta-analysis. Eur J Nucl Med Mol Imaging 30:851–858

    Article  PubMed  Google Scholar 

  31. Kowalski M, Kukulski T, Jamal F, D’hooge J, Weidemann F, Rademakers F, Bijnens B, Hatle L, Sutherland GR (2001) Can natural strain and strain rate quantify regional myocardial deformation? A study in healthy subjects. Ultrasound Med Biol 27:1087–1097

    Article  PubMed  CAS  Google Scholar 

  32. Lanzarini L, Bossi G, Laudisa ML, Klersy C, Arico M (2000) Lack of clinically significant cardiac dysfunction during intermediate dobutamine doses in long-term childhood cancer survivors exposed to anthracyclines. Am Heart J 140(2):315–323

    Article  PubMed  CAS  Google Scholar 

  33. Lattanzi F, Spirito P, Picano E, Mazzarisi A, Landini L, Distante A, Vecchio C, L’Abbate A (1991) Quantitative assessment of ultrasonic myocardial reflectivity in hypertrophic cardiomyopathy. J Am Coll Cardiol 17:1085–1090

    Article  PubMed  CAS  Google Scholar 

  34. Lipshultz SE, Sanders SP, Goorin AM, Krischer JP, Sallan SE, Colan SD (1994) Monitoring for anthracycline cardiotoxicity. Pediatrics 93(3):433–437

    PubMed  CAS  Google Scholar 

  35. Lipshultz SE, Rifai N, Sallan SE, Lipsitz SR, Dalton V, Sacks DB, Ottlinger ME (1997) Predictive value of cardiac troponin T in pediatric patients at risk for myocardial injury. Circulation 96:2641–2648

    PubMed  CAS  Google Scholar 

  36. Lipshultz SE, Lipsitz SR, Sallan SE, Dalton VM, Mone SM, Gelber RD, Colan SD (2005) Chronic progressive cardiac dysfunction years after doxorubicin therapy for childhood acute lymphoblastic leukemia. J Clin Oncol 23(12):2629–2636

    Article  PubMed  CAS  Google Scholar 

  37. Nagai H, Omi W, Yuasa T, Sakagami S, Takata S, Kobayashi K (2003) Ultrasonic analysis of anthracycline-induced myocardial damage using cyclic variation of integrated backscatter. J Am Soc Echocardiogr 16(8):808–813

    Article  PubMed  Google Scholar 

  38. Nagueh SF, McFalls J, Meyer D, Hill R, Zoghbi WA, Tam JW, Quinones MA, Roberts R, Marian AJ (2003) Tissue Doppler imaging predicts the development of hypertrophic cardiomyopathy in subjects with subclinical disease. Circulation 108:395–398

    Article  PubMed  Google Scholar 

  39. Neilan TG, Jassal DS, Perez-Sanz TM, Raher MJ, Pradhan AD, Buys ES, Ichinose F, Bayne DB, Halpern EF, Weyman AE, Derumeaux G, Bloch KD, Picard MH, Scherrer-Crosbie M (2006) Tissue Doppler imaging predicts left ventricular dysfunction and mortality in a murine model of cardiac injury. Eur Heart J 27:1868–1875

    Article  PubMed  Google Scholar 

  40. Ng R, Better N, Green MD (2006) Anticancer agents and cardiotoxicity. Semin Oncol 33:2–14

    Article  PubMed  CAS  Google Scholar 

  41. Okumura H, Iuchi K, Yoshida T, Nakamura S, Takeshima M, Takamatsu H, Ikeno A, Usuda K, Ishikawa T, Ohtake S, Matsuda T (2000) Brain natriuretic peptide is a predictor of anthracycline-induced cardiotoxicity. Acta Haematol 104:158–163

    Article  PubMed  CAS  Google Scholar 

  42. Pai VB, Nahata MC (2000) Cardiotoxicity of chemotherapeutic agents. Incidence, treatment and prevention. Drug Safety 22:263–302

    Article  PubMed  CAS  Google Scholar 

  43. Pieroni M, Chimenti C, Ricci R, Sale P, Russo MA, Frustaci A (2003) Early detection of Fabry cardiomyopathy by tissue Doppler imaging. Circulation 107:1978–1984

    Article  PubMed  Google Scholar 

  44. Seidman A, Hudis C, Pierri MK, Shak S, Paton V, Ashby M, Murphy M, Steward SJ, Keefe D (2002) Cardiac dysfunction in the trastuzumab clinical trials experience. J Clin Oncol 20:1215–1221

    Article  PubMed  CAS  Google Scholar 

  45. Shan K, Lincoff AM, Young JB (1996) Anthracycline-induced cardiotoxicity. Ann Intern Med 125:47–58

    PubMed  CAS  Google Scholar 

  46. Singal PK, Iliskovic N (1998) Doxorubicin-induced cardiomyopathy. N Engl J Med 339:900–905

    Article  PubMed  CAS  Google Scholar 

  47. Slamon D, Leyland-Jones B, Shak S, Fuchs H, Paton V, Bajamonde A, Fleming T, Eiermann W, Wolter J, Pegram M, Baselga J, Norton L (2001) Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that overexpresses HER2. N Engl J Med 344:783–792

    Article  PubMed  CAS  Google Scholar 

  48. Stapleton GE, Stapleton SL, Martinez A, Ayres NA, Kovalchin JP, Bezold LI, Pignatelli R, Eidem BW (2007) Evaluation of longitudinal ventricular function with tissue Doppler echocardiography in children treated with anthracyclines. J Am Soc Echocardiogr 20(5):492–497

    Article  PubMed  Google Scholar 

  49. Steinherz LJ, Graham T, Hurwitz R, Sondheimer HM, Schwartz RG, Shaffer EM, Sandor G, Benson L, Williams R (1992) Guidelines for cardiac monitoring of children during and after anthracycline therapy: report of the Cardiology Committee of the Children’s Cancer Study Group. Pediatrics 89(5):942–949

    PubMed  CAS  Google Scholar 

  50. Suter TM, Cook-Bruns N, Barton C (2004) Cardiotoxicity associated with trastuzumab (Herceptin) therapy in the treatment of metastatic breast cancer. Breast 13(3):173–183

    Article  PubMed  CAS  Google Scholar 

  51. Swain SM, Whaley FS, Gerber MC, Weisberg S, York M, Spicer D, Jones SE, Wadler S, Desai A, Vogel C, Speyer J, Mittelman A, Reddy S, Pendergrass K, Velez-Garcia E, Ewer MS, Bianchine JR, Gams RA (1997) Cardioprotection with dexrazoxane for doxorubicin-containing therapy in advanced breast cancer. J Clin Oncol 15(4):1318–1332

    PubMed  CAS  Google Scholar 

  52. Swain SM, Whaley FS, Ewer MS (2003) Congestive heart failure in patients treated with doxorubicin: a retrospective analysis of three trials. Cancer 97(11):2869–2879

    Article  PubMed  CAS  Google Scholar 

  53. Tassan-Mangina S, Codorean D, Metivier M, Costa B, Himberlin C, Jouannaud C, Blaise AM, Elaert J, Nazeyrollas P (2006) Tissue Doppler imaging and conventional echocardiography after anthracycline treatment in adults: early and late alterations of left ventricular function during a prospective study. Eur J Echocardiogr 7(2):141–146

    Article  PubMed  Google Scholar 

  54. Urheim S, Edvardsen T, Torp H, Angelsen B, Smiseth OA (2000) Myocardial strain by Doppler echocardiography. Validation of a new method to quantify regional myocardial function. Circulation 102:1158–1164

    PubMed  CAS  Google Scholar 

  55. Van Calsteren K, Berteloot P, Hanssens M, Vergote I, Amant F, Ganame J, Claus P, Mertens L, Lagae L, Delforge M, Paridaens R, Noens L, Humblet Y, Vandermeersch B, De Muylder X (2006) In utero exposure to chemotherapy: effect on cardiac and neurologic outcome. J Clin Oncol 24(12):e16–e17

    Article  PubMed  Google Scholar 

  56. van Dalen EC, van der Pal HJ, Kok WE, Caron HN, Kremer LC (2006) Clinical heart failure in a cohort of children treated with anthracyclines: a long-term follow-up study. Eur J Cancer 42(18):3191–3198

    Article  PubMed  CAS  Google Scholar 

  57. van Dalen EC, van den Brug M, Caron H, Kremer L (2006) Anthracycline-induced cardiotoxicity: Comparison of recommendations for monitoring cardiac function during therapy in pediatric oncology trials. Eur J Cancer 42(18):3199–3205

    Article  PubMed  CAS  Google Scholar 

  58. Vogel-Claussen J, Rochitte CE, Wu KC, Kamel IR, Foo TK, Lima JAC, Bluemke DA (2006) Delayed enhancement MR imaging: utility in myocardial assessment. Radiology 26:795–810

    Google Scholar 

  59. Voigt JU, Arnold MF, Karlsson M, Hubbert L, Kukulski T, Hatle L, Sutherland G (2000) Assessment of regional longitudinal myocardial strain rate derived from Doppler Myocardial Imaging indexes in normal and infracted myocardium. J Am Soc Echocard 13:588–598

    Article  CAS  Google Scholar 

  60. Wassmuth R, Hauser IA, Schuler K, Schulz-Menger J, Doerken B, Dietz R, Friedrich MG (2001) Subclinical cardiotoxic effects of anthracyclines as assessed by magnetic resonance imaging—a pilot study. Am Heart J 141(6):1007–1013

    Article  PubMed  CAS  Google Scholar 

  61. Weidemann F, Breunig F, Beer M, Sandstede J, Turschner O, Voelker W, Ertl G, Knoll A, Wanner C, Strotmann JM (2003) Improvement of cardiac function during enzyme replacement therapy in patients with Fabry disease: a prospective strain rate imaging study. Circulation 108(11):1299–1301

    Article  PubMed  CAS  Google Scholar 

  62. Weidemann F, Breunig F, Beer M, Sandstede J, Stork S, Voelker W, Ertl G, Knoll A, Wanner C, Strotmann JM (2005) The variation of morphological and functional cardiac manifestation in Fabry disease: potential implications for the time course of the disease. Eur Heart J 26:1221–1227

    Article  PubMed  Google Scholar 

  63. Wilson GM, Rahko PS (1995) The clinical utility of automatic boundary detection for the determination of left ventricular volume: a comparison with conventional off-line echocardiographic quantification. J Am Soc Echocardiogr 8:822–829

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jens-Uwe Voigt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jurcut, R., Wildiers, H., Ganame, J. et al. Detection and monitoring of cardiotoxicity—what does modern cardiology offer?. Support Care Cancer 16, 437–445 (2008). https://doi.org/10.1007/s00520-007-0397-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00520-007-0397-6

Keywords

Navigation