Skip to main content

Advertisement

Log in

Wound morbidity in mini-invasive thyroidectomy

  • Published:
Surgical Endoscopy Aims and scope Submit manuscript

Abstract

Background

The incidence of wound morbidity (WM) after conventional thyroidectomy (CT) is 2 to 7%. This study evaluated the rate of WM after video-assisted thyroidectomy (VAT), with emphasis on surgical-site infections (SSIs).

Methods

A total of 112 patients were recruited for this prospective, randomized surveillance analysis. The eligibility criteria included nodule smaller than 30 mm, gland volume less than 30 ml, and no previous neck surgery or advanced cancer. The exclusion criteria specified coexistent infection, immunosuppressive treatment, and pathologies requiring antibiotic prophylaxis. The patients were randomized for VAT or CT. Neither antibiotic prophylaxis nor a drain was used. The patients were followed after surgery for WM.

Results

Both groups consisted of 56 patients. The rate for WM was significantly lower in the VAT group (n = 1) than in the CT group (n = 8) (p < 0.05). The incidence of SSI was 5.3% after CT and 0% after VAT (p < 0.05), and the most common pathogenic organism was Staphylococcus aureus. All WMs became evident after patient discharge. Wound infection was associated with prolonged ambulatory dressings.

Conclusions

No previous studies have compared the rates for WM associated with endoscopic versus open surgery in the cervical area. Wound morbidity was significantly reduced after VAT relative to CT. The authors underscore the important effect of the minor surgical trauma associated with VAT on the development of SSIs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Dominioni L, Imperatori A, Rotolo N, Rovera F (2006) Risk factors for surgical infections. Surg Infect (Larchmt) 7:S9–S12

    Article  Google Scholar 

  2. Kirkland KB, Briggs JP, Trivette SL, Wilkinson WE, Sexton DJ (1999) The impact of surgical-site infections in the 1990s: attributable mortality, excess length of hospitalization, and extra costs. Infect Control Hosp Epidemiol 20:725–730

    Article  CAS  PubMed  Google Scholar 

  3. DiPiro JT, Martindale RG, Bakst A, Vacani PF, Watson P, Miller MT (1998) Infection in surgical patients: effects on mortality, hospitalization, and postdischarge care. Am J Health Syst Pharm 55:777–781

    CAS  PubMed  Google Scholar 

  4. Vegas AA, Jodra VM, García ML (1993) Nosocomial infection in surgery wards: a controlled study of increased duration of hospital stays and direct cost of hospitalization. Eur J Epidemiol 9:504–510

    CAS  PubMed  Google Scholar 

  5. Hollenbeak CS, Murphy D, Dunagan WC, Fraser VJ (2002) Nonrandom selection and the attributable cost of surgical-site infections. Infect Control Hosp Epidemiol 23:177–182

    Article  PubMed  Google Scholar 

  6. Bergamaschi R, Becouarn G, Ronceray J, Arnaud JP (1998) Morbidity of thyroid surgery. Am J Surg 176:71–75

    Article  CAS  PubMed  Google Scholar 

  7. Max MH, Scherm M, Bland KI (1983) Early and late complications after thyroid surgery. South Med J 76:977–980

    CAS  PubMed  Google Scholar 

  8. Flynn MB, Lyons KJ, Tarter JW, Ragsdale TL (1994) Local complications after surgical resection for thyroid carcinoma. Am J Surg 168:404–407

    Article  CAS  PubMed  Google Scholar 

  9. Johnson JT, Wagner RL (1987) Infection following uncontaminated head and neck surgery. Arch Otolaryngol Head Neck Surg 113:368–369

    CAS  PubMed  Google Scholar 

  10. Brown BM, Johnson JT, Wagner RL (1987) Etiologic factors in head and neck wound infections. Laryngoscope 97:587–590

    Article  CAS  PubMed  Google Scholar 

  11. Tabet JC, Johnson JT (1990) Wound infection in head and neck surgery: prophylaxis, etiology, and management. J Otolaryngol 19:197–200

    CAS  PubMed  Google Scholar 

  12. Dionigi G, Rovera F, Boni L, Castano P, Dionigi R (2006) Surgical-site infections after thyroidectomy. Surg Infect (Larchmt) 7:S117–S120

    Google Scholar 

  13. Dionigi G, Rovera F, Boni L, Dionigi R (2008) Surveillance of surgical-site infections after thyroidectomy in a one-day surgery setting. Int J Surg 6:S13–S15

    Article  PubMed  Google Scholar 

  14. Bergenfelz A, Jansson S, Kristoffersson A, Mårtensson H, Reihnér E, Wallin G, Lausen I (2008) Complications to thyroid surgery: results as reported in a database from a multicenter audit comprising 3, 660 patients. Langenbecks Arch Surg 393:667–673

    Article  CAS  PubMed  Google Scholar 

  15. Miccoli P, Bellantone R, Mourad M, Walz M, Raffaelli M, Berti P (2002) Minimally invasive video-assisted thyroidectomy: multiinstitutional experience. World J Surg 26:972–975

    Article  PubMed  Google Scholar 

  16. Terris DJ, Angelos P, Steward DL, Simental AA (2008) Minimally invasive video-assisted thyroidectomy: a multi-institutional North American experience. Arch Otolaryngol Head Neck Surg 134:81–84

    Article  PubMed  Google Scholar 

  17. Brunaud L, Zarnegar R, Wada N, Ituarte P, Clark OH, Duh QY (2003) Incision length for standard thyroidectomy and parathyroidectomy: when is it minimally invasive? Arch Surg 138:1140–1143

    Article  PubMed  Google Scholar 

  18. Horan TC, Gaynes RP, Martone WJ, Jarvis WR, Emori TG (1992) CDC definitions of nosocomial surgical-site infections, 1992: a modification of CDC definitions of surgical wound infections. Infect Control Hosp Epidemiol 13:606–608

    Article  CAS  PubMed  Google Scholar 

  19. Mangram AJ, Horan TC, Pearson ML, Silver LC, Jarvis WR (1999) Guideline for prevention of surgical-site infection, 1999. Hospital Infection Control Practices Advisory Committee. Infect Control Hosp Epidemiol 20:250–278

    Google Scholar 

  20. Dionigi G (2009) Evidence-based review series on endoscopic thyroidectomy: real progress and future trends. World J Surg 33:365–366

    Article  PubMed  Google Scholar 

  21. Duh QY (2003) Minimally invasive endocrine surgery: standard of treatment or hype? Surgery 134:849–857

    Article  PubMed  Google Scholar 

  22. Boni L, Benevento A, Rovera F, Dionigi G, Di Giuseppe M, Bertoglio C, Dionigi R (2006) Infective complications in laparoscopic surgery. Surg Infect (Larchmt) 7:S109–S111

    Article  Google Scholar 

  23. Yamamoto S, Fujita S, Ishiguro S, Akasu T, Moriya Y (2008) Wound infection after a laparoscopic resection for colorectal cancer. Surg Today 38:618–622

    Article  PubMed  Google Scholar 

  24. Hazelrigg SR, Nunchuck SK, LoCicero J, Video Assisted Thoracic Surgery Study Group (1993) Video Assisted Thoracic Surgery Study Group data. Ann Thorac Surg 56:1039–1044

    Article  CAS  PubMed  Google Scholar 

  25. Dellinger EP, Hausmann SM, Bratzler DW, Johnson RM, Daniel DM, Bunt KM, Baumgardner GA, Sugarman JR (2005) Hospitals collaborate to decrease surgical site infections. Am J Surg 190:9–15

    Article  PubMed  Google Scholar 

  26. Haley RW, Culver DH, White JW, Morgan WM, Emori TG, Munn VP, Hooton TM (1985) The efficacy of infection surveillance and control programs in preventing nosocomial infections in US hospitals. Am J Epidemiol 121:182–205

    CAS  PubMed  Google Scholar 

  27. Delgado-Rodríguez M, Gómez-Ortega A, Sillero-Arenas M, Llorca J (2001) Epidemiology of surgical-site infections diagnosed after hospital discharge: a prospective cohort study. Infect Control Hosp Epidemiol 22:24–30

    Article  PubMed  Google Scholar 

  28. Weigelt JA, Dryer D, Haley RW (1992) The necessity and efficiency of wound surveillance after discharge. Arch Surg 127:77–81

    CAS  PubMed  Google Scholar 

  29. Solomon MJ, McLeod RS (1995) Should we be performing more randomized controlled trials evaluating surgical operations? Surgery 118:459–467

    Article  CAS  PubMed  Google Scholar 

  30. Fung EK, Loré JM Jr (2002) Randomized controlled trials for evaluating surgical questions. Arch Otolaryngol Head Neck Surg 128:631–634

    PubMed  Google Scholar 

  31. Wichmann MW, Hüttl TP, Winter H, Spelsberg F, Angele MK, Heiss MM, Jauch KW (2005) Immunological effects of laparoscopic vs open colorectal surgery: a prospective clinical study. Arch Surg 140:692–697

    Article  PubMed  Google Scholar 

  32. Dionigi R, Dominioni L, Benevento A, Giudice G, Cuffari S, Bordone N, Caravati F, Carcano G, Gennari R (1994) Effects of surgical trauma of laparoscopic vs open cholecystectomy. Hepatogastroenterology 41:471–476

    CAS  PubMed  Google Scholar 

  33. Dionigi G, Rovera F, Boni L (2009) Commentary on transoral access for endoscopic thyroid resection. Surg Endosc 23:454–455. Witzel K, von Rahden BH, Kaminski C, Stein HJ (2008) Transoral access for endoscopic thyroid resection. Surg Endosc 22:1871–1875

    Google Scholar 

  34. Witzel K, von Rahden BH, Kaminski C, Stein HJ (2008) Transoral access for endoscopic thyroid resection. Surg Endosc 22:1871–1875

    Google Scholar 

  35. Henry JF (2008) Minimally invasive thyroid and parathyroid surgery is not a question of length of the incision. Langenbecks Arch Surg 393:621–626

    Article  PubMed  Google Scholar 

Download references

Disclosures

Gianlorenzo Dionigi, Francesca Rovera, Renzo Dionigi, Stefano Rausei, and Luigi Boni have no conflicts of interest or financial ties to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianlorenzo Dionigi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dionigi, G., Boni, L., Rovera, F. et al. Wound morbidity in mini-invasive thyroidectomy. Surg Endosc 25, 62–67 (2011). https://doi.org/10.1007/s00464-010-1130-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00464-010-1130-y

Keywords

Navigation