Skip to main content

Advertisement

Log in

Syndecans as receptors and organizers of the extracellular matrix

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

Syndecans are type I transmembrane proteins having a core protein modified with glycosaminoglycan chains, most commonly heparan sulphate. They are an ancient group of molecules, present in invertebrates and vertebrates. Among the plethora of molecules that can interact with heparan sulphate, the collagens and glycoproteins of the extracellular matrix are prominent. Frequently, they do so in conjunction with other receptors, most notably the integrins. For this reason, they are often referred to as “co-receptors”. However, just as with integrins, syndecans can interact with actin-associated proteins and signalling molecules, such as protein kinases. Some aspects of syndecan signalling are understood but much remains to be learned. The functions of syndecans in regulating cell adhesion and extracellular matrix assembly are described here. Evidence from null mice suggests that syndecans have roles in postnatal tissue repair, inflammation and tumour progression. Developmental deficits in lower vertebrates in which syndecans are eliminated are also informative and suggest that, in mammals, redundancy is a key issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams JC, Kureishy N, Taylor AL (2001) A role for syndecan-1 in coupling fascin spike formation by thrombospondin-1. J Cell Biol 152:1169–1182

    CAS  PubMed  Google Scholar 

  • Alexopoulou AN, Multhaupt HA, Couchman JR (2007) Syndecans in wound healing, inflammation and vascular biology. Int J Biochem Cell Biol 39:505–528

    CAS  PubMed  Google Scholar 

  • Andac Z, Sasaki T, Mann K, Brancaccio A, Deutzmann R, Timpl R (1999) Analysis of heparin, alpha-dystroglycan and sulfatide binding to the G domain of the laminin alpha1 chain by site-directed mutagenesis. J Mol Biol 287:253–264

    CAS  PubMed  Google Scholar 

  • Bachy S, Letourneur F, Rousselle P (2008) Syndecan-1 interaction with the LG4/5 domain in laminin-332 is essential for keratinocyte migration. J Cell Physiol 214:238–249

    CAS  PubMed  Google Scholar 

  • Barkalow FJ, Schwarzbauer JE (1991) Localization of the major heparin-binding site in fibronectin. J Biol Chem 266:7812–7818

    CAS  PubMed  Google Scholar 

  • Bass MD, Roach KA, Morgan MR, Mostafavi-Pour Z, Schoen T, Muramatsu T, Mayer U, Ballestrem C, Spatz JP, Humphries MJ (2007) Syndecan-4-dependent Rac1 regulation determines directional migration in response to the extracellular matrix. J Cell Biol 177:527–538

    CAS  PubMed  Google Scholar 

  • Bass MD, Morgan MR, Roadch KA, Settleman J, Goryachev AB, Humphries MJ (2008) p190RhoGAP is the convergence point of adhesion signals from α5β1 integrin and syndecan-4. J Cell Biol 181:1013–1026

    CAS  PubMed  Google Scholar 

  • Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, Humphries MJ, Kielty CM (2003) Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. J Biol Chem 278:34605–34616

    CAS  PubMed  Google Scholar 

  • Bax DV, Mahalingam Y, Cain S, Mellody K, Freeman L, Younger K, Shuttleworth CA, Humphries MJ, Couchman JR, Kielty CM (2007) Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci 120:1383–1392

    CAS  PubMed  Google Scholar 

  • Beauvais DM, Rapraeger AC (2003) Syndecan-1-mediated cell spreading requires signaling by alphavbeta3 integrins in human breast carcinoma cells. Exp Cell Res 286:219–232

    CAS  PubMed  Google Scholar 

  • Beauvais DM, Rapraeger AC (2004) Syndecans in tumor cell adhesion and signaling. Reprod Biol Endocrinol 2:3

    PubMed  Google Scholar 

  • Beauvais DM, Ell BJ, McWhorter AR, Rapraeger AC (2009) Syndecan-1 regulates αVβ3 and αVβ5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor. J Exp Med 206:691–705

    CAS  PubMed  Google Scholar 

  • Bishop JR, Schuksz M, Esko JD (2007) Heparan sulphate proteoglycans fine-tune mammalian physiology. Nature 446:1030–1037

    CAS  PubMed  Google Scholar 

  • Cain SA, Baldock C, Gallagher J, Morgan A, Bax DV, Weiss AS, Shuttleworth CA, Kielty CM (2005) Fibrillin-1 interactions with heparin. Implications for microfibril and elastic fiber assembly. J Biol Chem 280:30526–30537

    CAS  PubMed  Google Scholar 

  • Cain SA, Baldwin AK, Mahalingam Y, Raynal B, Jowitt TA, Shuttleworth CA, Couchman JR, Kielty CM (2008a) Heparan sulfate regulates fibrillin-1 N- and C-terminal interactions. J Biol Chem 283:27017–27027

    CAS  PubMed  Google Scholar 

  • Cain SA, Raynal B, Hodson N, Shuttleworth A, Kielty CM (2008b) Biomolecular analysis of elastic fibre molecules. Methods 45:42–52

    CAS  PubMed  Google Scholar 

  • Carlson CB, Lawler J, Mosher DF (2008) Structures of thrombospondins. Cell Mol Life Sci 65:672–686

    CAS  PubMed  Google Scholar 

  • Chakravati R, Sapountzi V, Adams JC (2005) Functional role of syndecan-1 cytoplasmic V region in lamellipodial spreading, actin bundling, and cell migration. Mol Biol Cell 16:3678–3691

    Google Scholar 

  • Chen E, Hermanson S, Ekker SC (2004) Syndecan-2 is essential for angiogenic sprouting during zebrafish development. Blood 103:1710–1719

    CAS  PubMed  Google Scholar 

  • Chiquet-Ehrismann R (2004) Tenascins. Int J Biochem Cell Biol 36:986–990

    CAS  PubMed  Google Scholar 

  • Choi S, Lee E, Kwon S, Park H, Yi JY, Kim S, Han IO, Yun Y, Oh ES (2005) Transmembrane domain-induced oligomerization is crucial for the functions of syndecan-2 and syndecan-4. J Biol Chem 280:42573–42579

    CAS  PubMed  Google Scholar 

  • Clamp A, Blackhall FH, Henrioud A, Jayson GC, Javaherian K, Esko J, Gallagher JT, Merry CLR (2006) The morphogenic properties of oligomeric endostatin are dependent on cell surface heparan sulfate. J Biol Chem 281:14813–14822

    CAS  PubMed  Google Scholar 

  • Couchman JR (2003) Syndecans: proteoglycan regulators of cell-surface microdomains? Nat Rev Mol Cell Biol 4:926–937

    CAS  PubMed  Google Scholar 

  • Couchman JR, Woods A (1999) Syndecan-4 and integrins: combinatorial signaling in cell adhesion. J Cell Sci 112:3415–3420

    CAS  PubMed  Google Scholar 

  • Couchman JR, Chen L, Woods A (2001) Syndecans and cell adhesion. Int Rev Cytol 207:113–150

    CAS  PubMed  Google Scholar 

  • DerMardirossian C, Bokoch GM (2005) GDIs: central regulatory molecules in RhoGTPase activation. Trends Cell Biol 15:609–613

    Google Scholar 

  • Dews IC, Mackenzie KR (2007) Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions. Proc Natl Acad Sci USA 104:20782–20787

    CAS  PubMed  Google Scholar 

  • Dovas A, Couchman JR (2005) RhoGDI: multiple functions in the regulation of Rho family GTPases. Biochem J 390:1–9

    CAS  PubMed  Google Scholar 

  • Dovas A, Yoneda A, Couchman JR (2006) PKCalpha-dependent activation of RhoA by syndecan-4 during focal adhesion formation. J Cell Sci 119:2837–2846

    CAS  PubMed  Google Scholar 

  • Durbeej M, Talts JF, Henry MD, Yurchenco PD, Campbell KP, Ekblom P (2001) Dystroglycan binding to laminin alpha1LG4 module influences epithelial morphogenesis of salivary gland and lung in vitro. Differentiation 69:121–134

    CAS  PubMed  Google Scholar 

  • Esko JD, Selleck SB (2002) Order out of chaos: assembly of ligand binding sites in heparan sulfate. Annu Rev Biochem 71:435–471

    CAS  PubMed  Google Scholar 

  • Esko JD, Zhang L (1996) Influence of core protein sequence on glycosaminoglycan assembly. Curr Opin Struct Biol 6:663–670

    CAS  PubMed  Google Scholar 

  • Essner JJ, Chen E, Ekker SC (2006) Syndecan-2. Int J Biochem Cell Biol 38:152–156

    CAS  PubMed  Google Scholar 

  • Ethell IM, Irie F, Kalo MS, Couchman JR, Pasquale EB, Yamaguchi Y (2001) Eph B2/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31:1001–1013

    CAS  PubMed  Google Scholar 

  • Galante LL, Schwarzbauer JE (2007) Requirements for sulfate transport and the diastrophic dysplasia sulfate transporter in fibronectin matrix assembly. J Cell Biol 179:999–1009

    CAS  PubMed  Google Scholar 

  • Gallagher J (2001) Heparan sulfate: growth control with a restricted sequence menu. J Clin Invest 108:357–361

    CAS  PubMed  Google Scholar 

  • Gama-de-Souza LN, Cyreno-Oliveira E, Freitas VM, Melo ES, Vilas-Boas VF, Moriscot AS, Jaeger RG (2008) Adhesion and protease activity in cell lines from human salivary gland tumors are regulated by the laminin-derived peptide AG73, syndecan-1 and beta1 integrin. Matrix Biol 27:402–419

    CAS  PubMed  Google Scholar 

  • Granés F, Berndt C, Roy C, Mangeat P, Reina M, Vilaró S (2003) Identification of a novel ezrin-binding site in syndecan-2 cytoplasmic domain. FEBS Lett 547:212–216

    PubMed  Google Scholar 

  • Greene DK, Tumova S, Couchman JR, Woods A (2003) Syndecan-4 associates with α-actinin. J Biol Chem 278:7617–7623

    CAS  PubMed  Google Scholar 

  • Hienola A, Tumova S, Kulesskiy E, Rauvala H (2006) N-syndecan deficiency impairs neural migration in brain. J Cell Biol 174:569–580

    CAS  PubMed  Google Scholar 

  • Hoffman MP, Nomizu M, Roque E, Lee S, Jung DW, Yamada Y, Kleinman HK (1998) Laminin-1 and laminin-2 G-domain synthetic peptides bind syndecan-1 and are involved in acinar formation of a human submandibular gland cell line. J Biol Chem 273:28633–28641

    CAS  PubMed  Google Scholar 

  • Hoffman MP, Engbring JA, Nielsen PK, Vargas J, Steinberg Z, Karmand AJ, Nomizu M, Yamada Y, Kleinman HK (2001) Cell type-specific differences in glycosaminoglycans modulate the biological activity of a heparin-binding peptide (RKRLQVQLSIRT) from the G domain of the laminin α1 chain. J Biol Chem 276:22077–22085

    CAS  PubMed  Google Scholar 

  • Horowitz A, Murakami M, Gao Y, Simons M (1999) Phosphatidylinositol 4, 5- bisphosphate mediates the interaction of syndecan-4 with protein kinase C. Biochemistry 38:15871–15877

    CAS  PubMed  Google Scholar 

  • Hozumi K, Suzuki N, Nielsen PK, Nomizu M, Yamada Y (2006) Laminin alpha1 chain LG4 module promotes cell attachment through syndecans and cell spreading through integrin alpha2beta1. J Biol Chem 281:32929–32940

    CAS  PubMed  Google Scholar 

  • Huang W, Chiquet-Ehrismann R, Moyano JV, Garcia-Pardo A, Orend G (2001) Interference of tenascin-C with syndecan-4 binding to fibronectin blocks cell adhesion and stimulates tumor cell proliferation. Cancer Res 61:8586–8594

    CAS  PubMed  Google Scholar 

  • Ingham KC, Brew SA, Atha DH (1990) Interaction of heparin with fibronectin and isolated fibronectin domains. Biochem J 272:605–611

    CAS  PubMed  Google Scholar 

  • Ingham KC, Brew SA, Migliorini MM, Busby TF (1993) Binding of heparin by type III domains and peptides from the carboxyterminal hepII region of fibronectin. Biochemistry 32:12548–12553

    CAS  PubMed  Google Scholar 

  • Isenberg JS, Frazier WA, Roberts DD (2008) Thrombospondin-1: a physiological regulator of nitric oxide signaling. Cell Mol Life Sci 65:728–742

    CAS  PubMed  Google Scholar 

  • Jurjus RA, Liu Y, Pal-Ghosh S, Tadvalkar G, Stepp MA (2008) Primary dermal fibroblasts derived from sdc-1 deficient mice migrate faster and have altered alpha v integrin function. Wound Repair Regen 16:649–660

    PubMed  Google Scholar 

  • Kato M, Saunders S, Nguyen H, Bernfield M (1995) Loss of cell surface syndecan-1 causes epithelia to transform into anchorage-independent mesenchyme-like cells. Mol Biol Cell 6:559–576

    CAS  PubMed  Google Scholar 

  • Kazerounian S, Yee KO, Lawler J (2008) Thrombospondins in cancer. Cell Mol Life Sci 65:700–712

    CAS  PubMed  Google Scholar 

  • Keum E, Kim Y, Kim J, Kwon S, Lim Y, Han I, Oh ES (2004) Syndecan-4 regulates localisation, activity and stability of protein kinase Cα. Biochem J 378:1007–1014

    CAS  PubMed  Google Scholar 

  • Khan MY, Jaikaria NS, Frenz DA, Villanueva G, Newman SA (1988) Structural changes in the NH2-terminal domain of fibronectin upon interaction with heparin. J Biol Chem 263:11314–11318

    CAS  PubMed  Google Scholar 

  • Kielty CM, Baldock C, Lee D, Rock MJ, Ashworth JL, Shuttleworth CA (2002) Fibrillin: from microfibril assembly to biomechanical function. Phil Trans R Soc Lond Biol 357:207–217

    CAS  Google Scholar 

  • Kinsey R, Williamson MR, Chaudry S, Mellody KT, McGovern A, Takahashi S, Shuttleworth CA, Kielty CM (2008) Fibrillin-1 microfibril deposition is dependent on fibronectin assembly. J Cell Sci 121:2696–2704

    CAS  PubMed  Google Scholar 

  • Klass CM, Couchman JR, Woods A (2000) Control of extracellular matrix assembly by syndecan-2 proteoglycan. J Cell Sci 113:493–506

    CAS  PubMed  Google Scholar 

  • Koda JE, Rapraeger A, Bernfield M (1985) Heparan sulfate proteoglycans from mouse mammary epithelial cells: cell surface proteoglycan as a receptor for interstitial collagens. J Biol Chem 260:8157–8162

    CAS  PubMed  Google Scholar 

  • Kreuger J, Spillmann D, Li JP, Lindahl U (2006) Interactions between heparan sulfate and proteins: the concept of specificity. J Cell Biol 174:323–327

    CAS  PubMed  Google Scholar 

  • Kuriyama S, Mayor R (2009) A role for syndecan-4 in neural inducation involving ERK- and PKC-dependent pathways. Development 136:575–584

    CAS  PubMed  Google Scholar 

  • Lander AD (1998) Proteoglycans: master regulators of molecular encounter. Matrix Biol 17:465–472

    CAS  PubMed  Google Scholar 

  • Leiss M, Beckmann K, Giros A, Costell M, Fassler R (2008) The role of integrin binding sites in fibronectin matrix assembly in vivo. Curr Opin Cell Biol 20:502–507

    CAS  PubMed  Google Scholar 

  • Lim ST, Longley RL, Couchman JR, Woods A (2003) Direct binding of syndecan-4 cytoplasmic domain to the catalytic domain of protein kinase C alpha (PKCα) increases focal adhesion localisation of PKCα. J Biol Chem 278:13795–13802

    CAS  PubMed  Google Scholar 

  • Lin F, Ren XD, Greiling D, Clark RA (2005) Three-dimensional migration of human adult dermal fibroblasts from collagen lattices into fibrin/fibronectin gels requires syndecan-4 proteoglycan. J Invest Dermatol 124:906–913

    CAS  PubMed  Google Scholar 

  • Lyon M, Rushton G, Askari JA, Humphries MJ, Gallagher JT (2000) Elucidation of the structural features of heparan sulfate important for interaction with the Hep-2 domain of fibronectin. J Biol Chem 275:4599–4606

    CAS  PubMed  Google Scholar 

  • Mahalingam Y, Gallagher JT, Couchman JR (2007) Cellular adhesion responses to the heparin-binding (HepII) domain of fibronectin require heparan sulfate with specific properties. J Biol Chem 282:3221–3230

    CAS  PubMed  Google Scholar 

  • Mao Y, Schwarzbauer JE (2005) Fibrinectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24:389–399

    CAS  PubMed  Google Scholar 

  • Maqueda A, Moyana JV, Hernández Del Cerro M, Peters DM, Garcia-Pardo A (2007) The heparin III-binding domain of fibronectin (III4–5 repeats) binds to fibronectin and inhibits fibronectin matrix assembly. Matrix Biol 26:642–651

    CAS  PubMed  Google Scholar 

  • Matsuura Y, Momota Y, Murata K, Matsushima H, Suzuki N, Nomizu M, Shinkai H, Utani A (2004) Localization of the laminin alpha4 chain in the skin and identification of a heparin-dependent cell adhesion site within the laminin α4 chain C-terminal LG4 module. J Invest Dermatol 122:614–620

    CAS  PubMed  Google Scholar 

  • Matthews HK, Marchant L, Carmona-Fontaine C, Kuriyama S, Larraín J, Holt MR, Parsons M, Mayor R (2008) Directional migration of neural crest cells in vivo is regulated by syndecan-4/Rac1 and non-canonical Wnt signalling/RhoA. Development 135:1771–1780

    CAS  PubMed  Google Scholar 

  • Midwood KS, Valenick LV, Hsia HC, Schwarzbauer JE (2004) Coregulation of fibronectin signaling and matrix contraction by tenascin-C and syndecan-4. Mol Biol Cell 15:5670–5677

    CAS  PubMed  Google Scholar 

  • Miner JH, Yurchenco PD (2004) Laminin functions in tissue morphogenesis. Annu Rev Cell Dev Biol 20:255–284

    CAS  PubMed  Google Scholar 

  • Morgan MR, Humphries MJ, Bass MD (2007) Synergistic control of cell adhesion by integrins and syndecans. Nat Rev Mol Cell Biol 8:957–969

    CAS  PubMed  Google Scholar 

  • Mostafavi-Pour Z, Askari JA, Parkinson SJ, Parker PJ, Ng TT, Humphries MJ (2003) Integrin-specific signaling pathways controlling focal adhesion formation and cell migration. J Cell Biol 161:155–167

    CAS  PubMed  Google Scholar 

  • Multhaupt HAB, Yoneda A, Whiteford JR, Oh ES, Lee W, Couchman JR (2009) Syndecan signaling: when, where and why. J Physiol Pharmacol (in press)

  • Munesue S, Kusano Y, Oguri K, Itano N, Yoshitomi Y, Nakanishi H, Yamashina I, Okayama M (2002) The role of syndecan-2 in regulation of actin-cytoskeletal organization of Lewis lung carcinoma-derived metastatic clones. Biochem J 363:201–209

    CAS  PubMed  Google Scholar 

  • Munesue S, Yoshitomi Y, Koyama Y, Nishiyama A, Nakanishi H, Miyazaki K, Ishimaru T, Okayama M, Oguri K (2007) A novel function of syndecan-2, suppression of matrix metalloproteinase-2 activation, which causes suppression of metastasis. J Biol Chem 282:28164–28174

    CAS  PubMed  Google Scholar 

  • Muñoz R, Moreno M, Oliva C, Orbenes C, Larraín J (2006) Syndecan-4 regulates non-canonical Wnt signalling and is essential for convergence and extension movements in Xenopus embryos. Nat Cell Biol 8:492–500

    PubMed  Google Scholar 

  • Murakami M, Elfenbein A, Simons M (2008) Non-canonical fibroblast growth factor signalling in angiogenesis. Cardiovasc Res 78:223–231

    CAS  PubMed  Google Scholar 

  • Murphy KJ, Merry CL, Lyon M, Thompson JE, Roberts IS, Gallagher JT (2004) A new model for the domain structure of heparan sulfate based on the novel specificity of K5 lyase. J Biol Chem 279:27239–27245

    CAS  PubMed  Google Scholar 

  • Nadanaka S, Kitagawa H (2008) Heparan sulphate biosynthesis and disease. J Biochem 144:7–14

    CAS  PubMed  Google Scholar 

  • Narita R, Yamashita H, Goto A, Imai H, Ichihara S, Mori H, Kitagawa Y (2004) Syndecan-dependent binding of Drosophila hemocytes to laminin α3/5 chain LG4–5 modules: potential role in sessile hemocyte islets formation. FEBS Lett 576:127–132

    CAS  PubMed  Google Scholar 

  • Nunes SS, Outeiro-Bernstein MA, Juliano L, Vardiero F, Nader HB, Woods A, Legrand C, Morandi V (2008) Syndecan-4 contributes to endothelial tubulogenesis through interactions with two motifs inside the pro-angiogenic N-terminal domain of thrombospondin-1. J Cell Physiol 214:828–837

    CAS  PubMed  Google Scholar 

  • Ogawa T, Tsubota Y, Hashimoto J, Kariya Y, Miyazaki K (2007a) The short arm of laminin γ2 chain of laminin-5 (laminin 332) binds syndecan-1 and regulates cellular adhesion and migration by suppressing phosphorylation of integrin β4 chain. Mol Biol Cell 18:1621–1633

    CAS  PubMed  Google Scholar 

  • Ogawa T, Tsubota Y, Hashimoto J, Kariya Y, Miyazaki K (2007b) The short arm of laminin gamma2 chain of laminin-5 (laminin-332) binds syndecan-1 and regulates cellular adhesion and migration by suppressing phosphorylation of integrin beta4 chain. Mol Biol Cell 18:1621–1633

    CAS  PubMed  Google Scholar 

  • Oh ES, Woods A, Lim ST, Theibert AW, Couchman JR (1998) Syndecan-4 proteoglycan cytoplasmic domain and phosphatidylinositol 4, 5-bisphosphate coordinately regulate protein kinase C activity. J Biol Chem 273:10624–10629

    CAS  PubMed  Google Scholar 

  • Okamoto O, Bachy S, Odenthal U, Rigal D, Lortat-Jacob H, Smyth N, Rousselle P (2003) Normal human keratinocytes bind to the alpha 3LG4/5 domain of unprocessed laminin-5 through the receptor syndecan-1. J Biol Chem 278:44168–44177

    CAS  PubMed  Google Scholar 

  • Okina E, Jensen TM, Whiteford JR, Couchman JR (2009) Syndecan proteoglycan contributions to cytoskeletal organization and contractility. Scand J Med Sci Sports doi:10.1111/j.1600-0838.2009.00941.x

    PubMed  Google Scholar 

  • Olivares GH, Carrasco H, Aroca F, Carvallo J, Segovia F, Larraín J (2009) Syndecan-1 regulates BMP signaling and dorso-ventral patterning of the ectoderm during early Xenopus development. Dev Biol 329:338–349

    CAS  PubMed  Google Scholar 

  • Orend G, Chiquet-Ehrismann R (2006) Tenascin-C induced signaling in cancer. Cancer Lett 2:143–163

    Google Scholar 

  • Orend G, Huang W, Olayioye MA, Hynes NE, Chiquet-Ehrismann R (2003) Tenascin-C blocks cell-cycle progression of anchorage-dependent fibroblasts on fibronectin through inhibition of syndecan-4. Oncogene 22:3917–3926

    CAS  PubMed  Google Scholar 

  • Pankov R, Yamada KM (2002) Fibronectin at a glance. J Cell Sci 115:3861–3863

    CAS  PubMed  Google Scholar 

  • Park H, Kim Y, Lim Y, Han I, Oh ES (2002) Syndecan-2 mediates adhesion and proliferation of colon carcinoma cells. J Biol Chem 277:29730–29736

    CAS  PubMed  Google Scholar 

  • Pellegrin S, Mellor H (2007) Actin stress fibres. J Cell Sci 120:3491–3499

    CAS  PubMed  Google Scholar 

  • Ritty TM, Broekelmann TJ, Werneck CC, Mecham RP (2003) Fibrillin-1 and -2 contain heparin-binding sites important for matrix deposition and that support cell attachment. Biochem J 375:425–432

    CAS  PubMed  Google Scholar 

  • Saito Y, Imazeki H, Miura S, Yoshimura T, Okutsu H, Harada Y, Ohwaki T, Nagao O, Kamiya S, Hayashi R, Kodama H, Handa H, Yoshida T, Fukai F (2007) A peptide from tenascin-C induces beta1 integrin activation through syndecan-4. J Biol Chem 282:34929–34937

    CAS  PubMed  Google Scholar 

  • Salmivirta M, Elenius K, Vainio S, Hofer U, Chiquet-Ehrismann R, Thesleff I, Jalkanen M (1991) Syndecan from tooth mesenchyme binds tenascin. J Biol Chem 266:7733–7739

    CAS  PubMed  Google Scholar 

  • Sanderson RD, Sneed TB, Young LA, Sullivan GL, Lander AD (1992) Adhesion of B lymphoid (MPC-11) cells to type I collagen is mediated by integral membrane proteoglycan, syndecan. J Immunol 148:3902–3911

    CAS  PubMed  Google Scholar 

  • Saoncella S, Echtermeyer F, Denhez F, Nowlen JK, Mosher DF, Robinson SD, Hynes RO, Goetinck PF (1999) Syndecan-4 signals cooperatively with integrins in a Rho-dependent manner in the assembly of focal adhesions and actin stress fibers. Proc Natl Acad Sci USA 96:2805–2810

    CAS  PubMed  Google Scholar 

  • Sharma A, Askari JA, Humphries MJ, Jones EY, Stuart DI (1999) Crystal structure of a heparin- and integrin-binding segment of human fibronectin. EMBO J 18:1468–1479

    CAS  PubMed  Google Scholar 

  • Shin J, Lee W, Lee D, Koo B-K, Han I, Lim Y, Woods A, Couchman JR, Oh E-S (2001) Solution structure of the dimeric cytoplasmic domain of syndecan-4. Biochemistry 40:8471–8478

    CAS  PubMed  Google Scholar 

  • Stepp MA, Liu Y, Pal-Ghosh S, Jurjus RA, Tadvalkar G, Sekaran A, LoSicco K, Jiang L, Larsen M, Li L, Yuspa SH (2007) Reduced migration, altered matrix and enhanced TGF-β1 signaling are signatures of mouse keratinocytes lacking Sdc1. J Cell Sci 120:2851–2863

    CAS  PubMed  Google Scholar 

  • Sugawara K, Tsuruta D, Ishii M, Jones JCR, Kobayashi H (2008) Laminin-332 and 511 in skin. Exp Dermatol 17:473–480

    CAS  PubMed  Google Scholar 

  • Suzuki N, Ichikawa N, Kasai S, Yamada M, Nishi N, Morioka H, Yamashita H, Kitagawa Y, Utani A, Hoffman MP, Nomizu M (2003) Syndecan binding sites in the laminin α1 chain G domain. Biochemistry 42:12625–12633

    CAS  PubMed  Google Scholar 

  • Suzuki N, Yokoyama F, Nomizu M (2005) Functional sites in the laminin alpha chains. Connect Tissue Res 46:142–152

    CAS  PubMed  Google Scholar 

  • Sweeney SM, Orgel JP, Fertala A, McAuliffe JD, Turner KR, Di Lullo GA, Chen S, Antipova O, Perumal S, Ala-Kokko L, Forlino A, Cabral WA, Barnes AM, Marinin JC, San Antonio JD (2008) Candidate cell and matrix interaction domains on the collagen fibril, the predominant protein of vertebrates. J Biol Chem 283:21187–21197

    CAS  PubMed  Google Scholar 

  • Telci D, Wang Z, Li X, Verderio EA, Humphries MJ, Baccarini M, Basaga H, Griffin M (2008) Fibronectin-tissue transglutaminase matrix rescues RGD-impaired cell adhesion through syndecan-4 and β1 integrin co-signaling. J Biol Chem 283:20937–20947

    CAS  PubMed  Google Scholar 

  • Tiedemann K, Bätge B, Müller PK, Reinhardt DP (2001) Interactions of fibrillin-1 with heparin/heparan sulfate, implications for microfibrillar assembly. J Biol Chem 276:36035–36042

    CAS  PubMed  Google Scholar 

  • Tkachenko E, Elfenbein A, Tirziu D, Simons M (2006) Syndecan-4 clustering induces cell migration in a PDZ-dependent manner. Circ Res 98:1398–1404

    CAS  PubMed  Google Scholar 

  • Tucker RP, Chiquet-Ehrismann R (2009) The regulation of tenascin expression by tissue microenvironments. Biochim Biophys Acta doi:10.10.16/j.bbamcr.2008.12.012

    PubMed  Google Scholar 

  • Tumova S, Woods A, Couchman JR (2000) Heparan sulfate chains from glypican and syndecans bind the HepII domain of fibronectin similarly despite minor structural differences. J Biol Chem 275:9410–9417

    CAS  PubMed  Google Scholar 

  • Underwood PA, Kirkpatrick A, Mitchell SM (2002) New insights into heparin binding to vitronectin: studies with monoclonal antibodies. Biochem J 365:57–67

    CAS  PubMed  Google Scholar 

  • Utani A, Nomizu M, Matsuura H, Kato K, Kobayashi T, Takeda U, Aota S, Nielsen PK, Shinkai H (2001) A unique sequence of the laminin α3 G domain binds to heparin and promotes cell adhesion through syndecan-2 and -4. J Biol Chem 276:28779–28788

    CAS  PubMed  Google Scholar 

  • Utani A, Momota Y, Endo H, Kauya Y, Beck K, Suzuki N, Nomizu M, Shinkai H (2003) Laminin α3 LG4 module induces matrix metalloproteinase-1 through mitogen-activated protein kinase signaling. J Biol Chem 278:34483–34490

    CAS  PubMed  Google Scholar 

  • Vuoriluoto K, Jokinen J, Kallio K, Salmivirta M, Heino J, Ivaska J (2008) Syndecan-1 supports integrin alpha2beta1-mediated adhesion to collagen. Exp Cell Res 314:3149–3181

    Google Scholar 

  • Whiteford JR, Couchman JR (2006) A conserved NXIP motif is required for cell adhesion properties of the syndecan-4 ectodomain. J Biol Chem 281:32156–32163

    CAS  PubMed  Google Scholar 

  • Whiteford JR, Behrends V, Kirby H, Kusche-Gullberg M, Muramatsu T, Couchman JR (2007) Syndecans promote integrin-mediated adhesion of mesenchymal cells in two distinct pathways. Exp Cell Res 313:3902–3913

    CAS  PubMed  Google Scholar 

  • Wilkins-Port CE, Sanderson RD, Tominna-Sebald E, McKeown-Longo PJ (2003) Vitronectin’s basic domain is a syndecan ligand which functions in trans to regulate vitronectin turnover. Cell Commun Adhes 10:85–103

    CAS  PubMed  Google Scholar 

  • Williams S, Schwarzbauer JE (2009) A shared mechanism of adhesion modulation for tenascin-C and fibulin-1. Mol Biol Cell 20:1141–1149

    CAS  PubMed  Google Scholar 

  • Woods A, Couchman JR (1994) Syndecan 4 heparan sulfate proteoglycan is a selectively enriched and widespread focal adhesion component. Mol Biol Cell 5:183–192

    CAS  PubMed  Google Scholar 

  • Woods A, Longley RL, Tumova S, Couchman JR (2000) Syndecan-4 binding to the high affinity heparin-binding domain of fibronectin drives focal adhesion formation in fibroblasts. Arch Biochem Biophys 374:66–72

    CAS  PubMed  Google Scholar 

  • Yamashita H, Goto A, Kadowaki T, Kitagawa Y (2004) Mammalian and Drosophila cells adhere to the laminin alpha4 LG4 domain through syndecans, but not glypicans. Biochem J 382:933–943

    CAS  PubMed  Google Scholar 

  • Yoneda J, Saiki I, Igarashi Y, Kobayashi H, Fujii H, Ishizaki Y, Kimizuka F, Kato I, Azuma I (1995) Role of the heparin-binding domain of chimeric peptides derived from fibronectin in cell spreading and motility. Exp Cell Res 217:169–179

    CAS  PubMed  Google Scholar 

  • Yokoyama F, Suzuki N, Kadoya Y, Utani A, Nakatsuka H, Nishi N, Haruki M, Kleinman HK, Nomizu M (2005) Bifunctional peptides derived from homologous loop regions in the laminin α chain LG4 modules interact with both α2β1 integrin and syndecan-2. Biochemistry 44:9581–9589

    CAS  PubMed  Google Scholar 

  • Zimmermann P, David G (1999) The syndecans, tuners of transmembrane signaling. FASEB J 13:S91–S100

    CAS  PubMed  Google Scholar 

  • Zimmermann P, Zhang Z, Degeest G, Mortier E, Leenaerts I, Coomans C, Schulz J, N’Kuli F, Courtoy PJ, David G (2005) Syndecan recycling is controlled by syntenin-PIP2 interactions and Arf6. Dev Cell 9:377–388

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Pia Klausen (Biotech Research and Innovation Center, University of Copenhagen) for preparing Figs. 2, 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Couchman.

Additional information

Xiaojie Xian and Sandeep Gopal contributed equally to this work.

The authors are supported by the Danish National Research Foundation, the Danish Medical Research Council, Vilhelm Pedersen Fonden, Haensch Fonden, Mizutani Foundation for Glycoscience, Grosserer Ernst Fischers mindelegat and the Department of Biomedical Sciences at the University of Copenhagen. S.G. is supported by the Faculty of Health Sciences and the Molecular Mechanisms of Disease PhD programme at the University of Copenhagen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xian, X., Gopal, S. & Couchman, J.R. Syndecans as receptors and organizers of the extracellular matrix. Cell Tissue Res 339, 31–46 (2010). https://doi.org/10.1007/s00441-009-0829-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-009-0829-3

Keywords

Navigation