Skip to main content
Log in

Hematopoietic stem cell aging and self-renewal

  • Review
  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Abstract

A functional decline of the immune system occurs during organismal aging that is attributable, in large part, to changes in the hematopoietic stem cell (HSC) compartment. In the mouse, several hallmark age-dependent changes in the HSC compartment have been identified, including an increase in HSC numbers, a decrease in homing efficiency, and a myeloid skewing of differentiation potential. Whether these changes are caused by gradual intrinsic changes within individual HSCs or by changes in the cellular composition of the HSC compartment remains unclear. However, of note, many of the aging properties of HSCs are highly dependent on their genetic background. In particular, the widely used C57Bl/6 strain appears to have unique HSC aging characteristics compared with those of other mouse strains. These differences can be exploited by using recombinant inbred strains to further our understanding of the genetic basis for HSC aging. The mechanism(s) responsible for HSC aging have only begun to be elucidated. Recent studies have reported co-ordinated variation in gene expression of HSCs with age, possibly as a result of epigenetic changes. In addition, an accumulation of DNA damage, in concert with an increase in intracellular reactive oxygen species, has been associated with aged HSCs. Nevertheless, whether age-related changes in HSCs are programmed to occur in a certain predictable fashion, or whether they are simply an accumulation of random changes over time remains unclear. Further, whether the genetic dysregulation observed in old HSCs is a cause or an effect of cellular aging is unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Allsopp RC, Morin GB, Horner JW, DePinho R, Harley CB, Weissman IL (2003a) Effect of TERT over-expression on the long-term transplantation capacity of hematopoietic stem cells. Nat Med 9:369–371

    Article  PubMed  CAS  Google Scholar 

  • Allsopp RC, Morin GB, DePinho R, Harley CB, Weissman IL (2003b) Telomerase is required to slow telomere shortening and extend replicative lifespan of HSCs during serial transplantation. Blood 102:517–520

    Article  PubMed  CAS  Google Scholar 

  • Ames BN, Shigenaga MK, Hagen TM (1993) Oxidants, antioxidants, and the degenerative diseases of aging. Proc Natl Acad Sci USA 90:7915–7922

    Article  PubMed  CAS  Google Scholar 

  • Bahar R, Hartmann CH, Rodriguez KA, Denny AD, Busuttil RA, Dollé ME, et al (2006) Increased cell-to-cell variation in gene expression in ageing mouse heart. Nature 441:1011–1014

    Article  PubMed  CAS  Google Scholar 

  • Bender CF, Sikes ML, Sullivan R, Huye LE, Le Beau MM, Roth DB, et al (2002) Cancer predisposition and hematopoietic failure in Rad50(SS) mice. Genes Dev 16:2237–2251

    Article  PubMed  CAS  Google Scholar 

  • Bowie MB, McKnight KD, Kent DG, McCaffrey L, Hoodless PA, Eaves CJ (2006) Hematopoietic stem cells proliferate until after birth and show a reversible phase-specific engraftment defect. J Clin Invest 116:2808–2816

    Article  PubMed  CAS  Google Scholar 

  • Breems DA, Blokland EA, Neben S, Ploemacher RE (1994) Frequency analysis of human primitive haematopoietic stem cell subsets using a cobblestone area forming cell assay. Leukemia 8:1095–1104

    PubMed  CAS  Google Scholar 

  • Bug G, Gul H, Schwarz K, Pfeifer H, Kampfmann M, Zheng X, et al (2005) Valproic acid stimulates proliferation and self-renewal of hematopoietic stem cells. Cancer Res 65:2537–2541

    Article  PubMed  CAS  Google Scholar 

  • Bystrykh L, Weersing E, Dontje B, Sutton S, Pletcher MT, Wiltshire T, et al (2005) Uncovering regulatory pathways that affect hematopoietic stem cell function using “genetical genomics”. Nat Genet 37:225–232

    Article  PubMed  CAS  Google Scholar 

  • Campisi J (2003) Cancer and ageing: rival demons? Nat Rev Cancer 3:339–349

    Article  PubMed  CAS  Google Scholar 

  • Campisi J (2005) Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120:513–522

    Article  PubMed  CAS  Google Scholar 

  • Chambers SM, Shaw CA, Gatza C, Fisk CJ, Donehower LA, Goodell MA (2007) Aging hematopoietic stem cells decline in function and exhibit epigenetic dysregulation. PLoS Biol 5:e201

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Astle CM, Harrison DE (2000a) Genetic regulation of primitive hematopoietic stem cell senescence. Exp Hematol 28:442–450

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Astle CM, Muller-Sieburg CE, Harrison DE (2000b) Primitive hematopoietic stem cell function in vivo is uniquely high in the CXB-12 mouse strain. Blood 96:4124–4131

    PubMed  CAS  Google Scholar 

  • Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M, et al (2000) Hematopoietic stem cell quiescence maintained by p21cip/waf1. Science 287:1804–1808

    Article  PubMed  CAS  Google Scholar 

  • Cheshier SH, Morrison SJ, Liao X, Weissman IL (1999) In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 96:3120–3125

    Article  PubMed  CAS  Google Scholar 

  • Chin L, Artandi SE, Shen Q, Tam A, Lee SL, Gottlieb GJ, et al (1999) p53 deficiency rescues the adverse effects of telomere loss and cooperates with telomere dysfunction to accelerate carcinogenesis. Cell 97:527–538

    Article  PubMed  CAS  Google Scholar 

  • Choudhury AR, Ju Z, Djojosubroto MW, Schienke A, Lechel A, Schaetzlein S, et al (2007) Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nat Genet 39:99–105

    Article  PubMed  CAS  Google Scholar 

  • Dexter TM, Allen TD, Lajtha LG (1977) Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 91:335–344

    Article  PubMed  CAS  Google Scholar 

  • Dumble M, Moore L, Chambers SM, Geiger H, Van Zant G, Goodell MA, et al (2007) The impact of altered p53 dosage on hematopoietic stem cell dynamics during aging. Blood 109:1736–1742

    Article  PubMed  CAS  Google Scholar 

  • Dykstra B, Kent D, Bowie M, McCaffrey L, Hamilton M, Lyons K, et al (2007) Long-term propagation of distinct hematopoietic differentiation programs in vivo. Cell Stem Cell 1:218–229

    Article  CAS  PubMed  Google Scholar 

  • Ema H, Sudo K, Seita J, Matsubara A, Morita Y, Osawa M, et al (2005) Quantification of self-renewal capacity in single hematopoietic stem cells from normal and Lnk-deficient mice. Dev Cell 8:907–914

    Article  PubMed  CAS  Google Scholar 

  • Fleming WH, Alpern EJ, Uchida N, Ikuta K, Spangrude GJ, Weissman IL (1993) Functional heterogeneity is associated with the cell cycle status of murine hematopoietic stem cells. J Cell Biol 122:897–902

    Article  PubMed  CAS  Google Scholar 

  • Geiger H, Rennebeck G, Van Zant G (2005) Regulation of hematopoietic stem cell aging in vivo by a distinct genetic element. Proc Natl Acad Sci USA 102:5102–5107

    Article  PubMed  CAS  Google Scholar 

  • Haan G de, Van Zant G (1999a) Dynamic changes in mouse hematopoietic stem cell numbers during aging. Blood 93:3294–3301

    PubMed  Google Scholar 

  • Haan G de, Van Zant G (1999b) Genetic analysis of hemopoietic cell cycling in mice suggests its involvement in organismal life span. FASEB J 13:707–713

    PubMed  Google Scholar 

  • Haan G de, Nijhof W, Van Zant G (1997) Mouse strain-dependent changes in frequency and proliferation of hematopoietic stem cells during aging: correlation between lifespan and cycling activity. Blood 89:1543–1550

    PubMed  Google Scholar 

  • Haan G de, Bystrykh LV, Weersing E, Dontje B, Geiger H, Ivanova N, et al (2002) A genetic and genomic analysis identifies a cluster of genes associated with hematopoietic cell turnover. Blood 100:2056–2062

    Article  PubMed  CAS  Google Scholar 

  • Habibian HK, Peters SO, Hsieh CC, Wuu J, Vergilis K, Grimaldi CI, et al (1998) The fluctuating phenotype of the lymphohematopoietic stem cell with cell cycle transit. J Exp Med 188:393–398

    Article  PubMed  CAS  Google Scholar 

  • Harrison DE (1980) Competitive repopulation: a new assay for long-term stem cell functional capacity. Blood 55:77–81

    PubMed  CAS  Google Scholar 

  • Harrison DE (1983) Long-term erythropoietic repopulating ability of old, young, and fetal stem cells. J Exp Med 157:1496–1504

    Article  PubMed  CAS  Google Scholar 

  • Harrison DE, Astle CM (1982) Loss of stem cell repopulating ability upon transplantation. Effects of donor age, cell number, and transplantation procedure. J Exp Med 156:1767–1779

    Article  PubMed  CAS  Google Scholar 

  • Harrison DE, Astle CM, Delaittre JA (1978) Loss of proliferative capacity in immunohemopoietic stem cells caused by serial transplantation rather than aging. J Exp Med 147:1526–1531

    Article  PubMed  CAS  Google Scholar 

  • Harrison DE, Astle CM, Stone M (1989) Numbers and functions of transplantable primitive immunohematopoietic stem cells. Effects of age. J Immunol 142:3833–3840

    PubMed  CAS  Google Scholar 

  • Henckaerts E, Langer JC, Snoeck HW (2004) Quantitative genetic variation in the hematopoietic stem cell and progenitor cell compartment and in lifespan are closely linked at multiple loci in BXD recombinant inbred mice. Blood 104:374–379

    Article  PubMed  CAS  Google Scholar 

  • Hotta T, Hirabayashi N, Utsumi M, Murate T, Yamada H (1980) Age-related changes in the function of hemopoietic stroma in mice. Exp Hematol 8:933–936

    PubMed  CAS  Google Scholar 

  • Imai S, Kitano H (1998) Heterochromatin islands and their dynamic reorganization: a hypothesis for three distinctive features of cellular aging. Exp Gerontol 33:555–570

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Hirao A, Arai F, Matsuoka S, Takubo K, Hamaguchi I, et al (2004) Regulation of oxidative stress by ATM is required for self-renewal of haematopoietic stem cells. Nature 431:997–1002

    Article  PubMed  CAS  Google Scholar 

  • Ito K, Hirao A, Arai F, Takubo K, Matsuoka S, Miyamoto K, et al (2006) Reactive oxygen species act through p38 MAPK to limit the lifespan of hematopoietic stem cells. Nat Med 12:446–451

    Article  PubMed  CAS  Google Scholar 

  • Iwama A, Oguro H, Negishi M, Kato Y, Morita Y, Tsukui H, et al (2004) Enhanced self-renewal of hematopoietic stem cells mediated by the Polycomb gene product Bmi-1. Immunity 21:843–851

    Article  PubMed  CAS  Google Scholar 

  • Iwama A, Oguro H, Negishi M, Kato Y, Nakauchia H (2005) Epigenetic regulation of hematopoietic stem cell self-renewal by polycomb group genes. Int J Hematol 81:294–300

    Article  PubMed  CAS  Google Scholar 

  • Jang YY, Sharkis SJ (2007) A low level of reactive oxygen species selects for primitive hematopoietic stem cells that may reside in the low-oxygenic niche. Blood 110:3056–3063

    Article  PubMed  CAS  Google Scholar 

  • Kamminga LM, Os R van, Ausema A, Noach EJ, Weersing E, Dontje B, et al (2005) Impaired hematopoietic stem cell functioning after serial transplantation and during normal aging. Stem Cells 23:82–92

    Article  PubMed  CAS  Google Scholar 

  • Kamminga LM, Bystrykh LV, Boer A de, Houwer S, Douma J, Weersing E, et al (2006) The Polycomb group gene Ezh2 prevents hematopoietic stem cell exhaustion. Blood 107:2170–2179

    Article  PubMed  CAS  Google Scholar 

  • Kiel MJ, Yilmaz OH, Iwashita T, Terhorst C, Morrison SJ (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Moon HB, Spangrude GJ (2003) Major age-related changes of mouse hematopoietic stemprogenitor cells. Ann NY Acad Sci 996:195–208

    Article  PubMed  Google Scholar 

  • Liang Y, Van Zant G (2003) Genetic control of stem-cell properties and stem cells in aging. Curr Opin Hematol 10:195–202

    Article  PubMed  Google Scholar 

  • Liang Y, Van Zant G, Szilvassy SJ (2005) Effects of aging on the homing and engraftment of murine hematopoietic stem and progenitor cells. Blood 106:1479–1487

    Article  PubMed  CAS  Google Scholar 

  • Liang Y, Jansen M, Aronow B, Geiger H, Van Zant G (2007) The quantitative trait gene latexin influences the size of the hematopoietic stem cell population in mice. Nat Genet 39:178–188

    Article  PubMed  CAS  Google Scholar 

  • Linton PJ, Dorshkind K (2004) Age-related changes in lymphocyte development and function. Nat Immunol 5:133–139

    Article  PubMed  CAS  Google Scholar 

  • Lund AH, van Lohuizen M (2004) Polycomb complexes and silencing mechanisms. Curr Opin Cell Biol 16:239–246

    Article  PubMed  CAS  Google Scholar 

  • Mauch P, Botnick LE, Hannon EC, Obbagy J, Hellman S (1982) Decline in bone marrow proliferative capacity as a function of age. Blood 60:245–252

    PubMed  CAS  Google Scholar 

  • Meng A, Wang Y, Van Zant G, Zhou D (2003) Ionizing radiation and busulfan induce premature senescence in murine bone marrow hematopoietic cells. Cancer Res 63:5414–5419

    PubMed  CAS  Google Scholar 

  • Miller RA (1996) The aging immune system: primer and prospectus. Science 273:70–74

    Article  PubMed  CAS  Google Scholar 

  • Moore KA, Lemischka IR (2006) Stem cells and their niches. Science 311:1880–1885

    Article  PubMed  CAS  Google Scholar 

  • Morita Y, Ema H, Yamazaki S, Nakauchi H (2006) Non-side-population hematopoietic stem cells in mouse bone marrow. Blood 108:2850–2856

    Article  PubMed  CAS  Google Scholar 

  • Morrison SJ, Wandycz AM, Akashi K, Globerson A, Weissman IL (1996) The aging of hematopoietic stem cells. Nat Med 2:1011–1016

    Article  PubMed  CAS  Google Scholar 

  • Muller-Sieburg CE, Cho RH, Thoman M, Adkins B, Sieburg HB (2002) Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100:1302–1309

    PubMed  CAS  Google Scholar 

  • Muller-Sieburg CE, Cho RH, Karlsson L, Huang JF, Sieburg HB (2004) Myeloid-biased hematopoietic stem cells have extensive self-renewal capacity but generate diminished lymphoid progeny with impaired IL-7 responsiveness. Blood 103:4111–4118

    Article  PubMed  CAS  Google Scholar 

  • Nijnik A, Woodbine L, Marchetti C, Dawson S, Lambe T, Liu C, et al (2007) DNA repair is limiting for haematopoietic stem cells during ageing. Nature 447:686–690

    Article  PubMed  CAS  Google Scholar 

  • Ogden DA, Mickliem HS (1976) The fate of serially transplanted bone marrow cell populations from young and old donors. Transplantation 22:287–293

    Article  PubMed  CAS  Google Scholar 

  • Parmar K, Mauch P, Vergilio JA, Sackstein R, Down JD (2007) Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 104:5431–5436

    Article  PubMed  CAS  Google Scholar 

  • Pearce DJ, Ridler CM, Simpson C, Bonnet D (2004) Multiparameter analysis of murine bone marrow side population cells. Blood 103:2541–2546

    Article  PubMed  CAS  Google Scholar 

  • Ploemacher RE, Sluijs JP van der, Voerman JS, Brons NH (1989) An in vitro limiting-dilution assay of long-term repopulating hematopoietic stem cells in the mouse. Blood 74:2755–2763

    PubMed  CAS  Google Scholar 

  • Rossi DJ, Bryder D, Zahn JM, Ahlenius H, Sonu R, Wagers AJ, et al (2005) Cell intrinsic alterations underlie hematopoietic stem cell aging. Proc Natl Acad Sci USA 102:9194–9199

    Article  PubMed  CAS  Google Scholar 

  • Rossi DJ, Bryder D, Weissman IL (2007a) Hematopoietic stem cell aging: mechanism and consequence. Exp Gerontol 42:385–390

    Article  PubMed  CAS  Google Scholar 

  • Rossi DJ, Bryder D, Seita J, Nussenzweig A, Hoeijmakers J, Weissman IL (2007b) Deficiencies in DNA damage repair limit the function of haematopoietic stem cells with age. Nature 447:725–729

    Article  PubMed  CAS  Google Scholar 

  • Snoeck HW (2005) Quantitative trait analysis in the investigation of function and aging of hematopoietic stem cells. Methods Mol Med 105:47–62

    PubMed  CAS  Google Scholar 

  • Sohal RS, Weindruch R (1996) Oxidative stress, caloric restriction, and aging. Science 273:59–63

    Article  PubMed  CAS  Google Scholar 

  • Sudo K, Ema H, Morita Y, Nakauchi H (2000) Age-associated characteristics of murine hematopoietic stem cells. J Exp Med 192:1273–1280

    Article  PubMed  CAS  Google Scholar 

  • Sutherland HJ, Eaves CJ, Eaves AC, Dragowska W, Lansdorp PM (1989) Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74:1563–1570

    PubMed  CAS  Google Scholar 

  • Szilvassy SJ, Humphries RK, Lansdorp PM, Eaves AC, Eaves CJ (1990) Quantitative assay for totipotent reconstituting hematopoietic stem cells by a competitive repopulation strategy. Proc Natl Acad Sci USA 87:8736–8740

    Article  PubMed  CAS  Google Scholar 

  • Tothova Z, Kollipara R, Huntly BJ, Lee BH, Castrillon DH, Cullen DE, et al (2007) FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 128:325–339

    Article  PubMed  CAS  Google Scholar 

  • Tyan ML (1977) Age-related decrease in mouse T cell progenitors. J Immunol 118:846–851

    PubMed  CAS  Google Scholar 

  • van Os R, Kamminga LM, Ausema A, Bystrykh LV, Draijer DP, Pelt K van, et al (2007) A limited role for p21Cip/Waf1 in maintaining normal hematopoietic stem cell functioning. Stem Cells 25:836–843

    Article  PubMed  CAS  Google Scholar 

  • Van Zant G, Eldridge PW, Behringer RR, Dewey MJ (1983) Genetic control of hematopoietic kinetics revealed by analyses of allophenic mice and stem cell suicide. Cell 35:639–645

    Article  PubMed  Google Scholar 

  • Van Zant G, Holland BP, Eldridge PW, Chen JJ (1990) Genotype-restricted growth and aging patterns in hematopoietic stem cell populations of allophenic mice. Exp Med 171:1547–1565

    Article  Google Scholar 

  • Villeponteau B (1997) The heterochromatin loss model of aging. Exp Gerontol 32:383–394

    Article  PubMed  CAS  Google Scholar 

  • Walkley CR, Olsen GH, Dworkin S, Fabb SA, Swann J, McArthur GA, et al (2007) A microenvironment-induced myeloproliferative syndrome caused by retinoic acid receptor gamma deficiency. Cell 129:1097–1110

    Article  PubMed  CAS  Google Scholar 

  • Xing Z, Ryan MA, Daria D, Nattamai KJ, Van Zant G, Wang L, et al (2006) Increased hematopoietic stem cell mobilization in aged mice. Blood 108:2190–2197

    Article  PubMed  CAS  Google Scholar 

  • Yilmaz OH, Kiel MJ, Morrison SJ (2006) SLAM family markers are conserved among hematopoietic stem cells from old and reconstituted mice and markedly increase their purity. Blood 107:924–930

    Article  PubMed  CAS  Google Scholar 

  • Young JC, Wu S, Hansteen G, Du C, Sambucetti L, Remiszewski S, et al (2004) Inhibitors of histone deacetylases promote hematopoietic stem cell self-renewal. Cytotherapy 6:328–336

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Kent and R. van Os for critical reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brad Dykstra.

Additional information

We are grateful for the generous financial support provided by the Dutch Platform for Tissue Engineering (to B.D.) and for a VICI grant awarded by the Netherlands Organization for Scientific Research (to G.d.H.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dykstra, B., de Haan, G. Hematopoietic stem cell aging and self-renewal. Cell Tissue Res 331, 91–101 (2008). https://doi.org/10.1007/s00441-007-0529-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00441-007-0529-9

Keywords

Navigation