Skip to main content
Log in

Environmental exposure and mitochondrial epigenetics: study design and analytical challenges

  • Review Paper
  • Published:
Human Genetics Aims and scope Submit manuscript

Abstract

The environment can influence human health and disease in many harmful ways. Many epidemiological studies have been conducted with the aim of elucidating the association between environmental exposure and human disease at the molecular and pathological levels, and such associations can often be through induced epigenetic changes. One such mechanism for this is through environmental factors increasing oxidative stress in the cell, and this stress can subsequently lead to alterations in DNA molecules. The two cellular organelles that contain DNA are the nucleus and mitochondria, and the latter are particularly sensitive to oxidative stress, with mitochondrial functions often disrupted by increased stress. There has been a substantial increase over the past decade in the number of epigenetic studies investigating the impact of environmental exposures upon genomic DNA, but to date there has been insufficient attention paid to the impact upon mitochondrial epigenetics in studying human disease with exposure to environment. Here, in this review, we will discuss mitochondrial epigenetics with regard to epidemiological studies, with particular consideration given to study design and analytical challenges. Furthermore, we suggest future directions and perspectives in the field of mitochondrial epigenetic epidemiological studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Baer RJ, Dubin DT (1981) Methylated regions of hamster mitochondrial ribosomal RNA: structural and functional correlates. Nucleic Acids Res 9:323–337

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barrey E, Saint-Auret G, Bonnamy B, Damas D, Boyer O, Gidrol X (2011) Pre-microRNA and mature microRNA in human mitochondria. PLoS One 6:e20220

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bellizzi D, D’Aquila P, Giordano M, Montesanto A, Passarino G (2012) Global DNA methylation levels are modulated by mitochondrial DNA variants. Epigenomics 4:17–27

    Article  CAS  PubMed  Google Scholar 

  • Bellizzi D, D’Aquila P, Scafone T, Giordano M, Riso V, Riccio A, Passarino G (2013) The control region of mitochondrial DNA shows an unusual CpG and non-CpG methylation pattern. DNA Res 20(6):537–547

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bienertova-Vasku J, Sana J, Slaby O (2013) The role of microRNAs in mitochondria in cancer. Cancer Lett 336:1–7

    Article  CAS  PubMed  Google Scholar 

  • Borchert A, Wolf NI, Wilichowski E (2002) Current concepts of mitochondrial disorders in childhood. Semin Pediatr Neurol 9:151–159

    Article  PubMed  Google Scholar 

  • Bouhlal Y, Martinez S, Gong H, Dumas K, Shieh JT (2013) Twin mitochondrial sequence analysis. Mol Genet Genomic Med 1:174–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bugl H, Fauman EB, Staker BL, Zheng F, Kushner SR, Saper MA, Bardwell JC, Jakob U (2000) RNA methylation under heat shock control. Mol Cell 6:349–360

    Article  CAS  PubMed  Google Scholar 

  • Burton GJ, Jauniaux E (2011) Oxidative stress. Best Pract Res Clin Obstet Gynaecol 25:287–299

    Article  PubMed Central  PubMed  Google Scholar 

  • Byun HM, Panni T, Motta V, Hou L, Nordio F, Apostoli P, Bertazzi PA, Baccarelli AA (2013) Effects of airborne pollutants on mitochondrial DNA methylation. Part Fibre Toxicol 10:18

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chan DC (2006) Mitochondria: dynamic organelles in disease, aging, and development. Cell 125:1241–1252

    Article  CAS  PubMed  Google Scholar 

  • Chen H, Dzitoyeva S, Manev H (2012) Effect of valproic acid on mitochondrial epigenetics. Eur J Pharmacol 690:51–59

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chestnut BA, Chang Q, Price A, Lesuisse C, Wong M, Martin LJ (2011) Epigenetic regulation of motor neuron cell death through DNA methylation. J Neurosci 31:16619–16636

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Choi YS, Hoon Jeong J, Min HK, Jung HJ, Hwang D, Lee SW, Kim Pak Y (2011) Shot-gun proteomic analysis of mitochondrial D-loop DNA binding proteins: identification of mitochondrial histones. Mol Biosyst 7:1523–1536

    Article  CAS  PubMed  Google Scholar 

  • Coene ED, Hollinshead MS, Waeytens AA, Schelfhout VR, Eechaute WP, Shaw MK, Van Oostveldt PM, Vaux DJ (2005) Phosphorylated BRCA1 is predominantly located in the nucleus and mitochondria. Mol Biol Cell 16:997–1010

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Conley KE, Marcinek DJ, Villarin J (2007) Mitochondrial dysfunction and age. Curr Opin Clin Nutr Metab Care 10:688–692

    Article  CAS  PubMed  Google Scholar 

  • Dimauro S, Davidzon G (2005) Mitochondrial DNA and disease. Ann Med 37:222–232

    Article  CAS  PubMed  Google Scholar 

  • Duarte FV, Gomes AP, Teodoro JS, Varela AT, Moreno AJ, Rolo AP, Palmeira CM (2013) Dibenzofuran-induced mitochondrial dysfunction: interaction with ANT carrier. Toxicol In Vitro 27:2160–2168

    Article  CAS  PubMed  Google Scholar 

  • Dubin DT, Taylor RH, Davenport LW (1978) Methylation status of 13S ribosomal RNA from hamster mitochondria: the presence of a novel riboside, N4-methylcytidine. Nucleic Acids Res 5:4385–4397

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dumollard R, Duchen M, Carroll J (2007) The role of mitochondrial function in the oocyte and embryo. Curr Top Dev Biol 77:21–49

    Article  CAS  PubMed  Google Scholar 

  • Dzitoyeva S, Chen H, Manev H (2012) Effect of aging on 5-hydroxymethylcytosine in brain mitochondria. Neurobiol Aging 33:2881–2891

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Feng S, Xiong L, Ji Z, Cheng W, Yang H (2012) Correlation between increased ND2 expression and demethylated displacement loop of mtDNA in colorectal cancer. Mol Med Rep 6:125–130

    CAS  PubMed  Google Scholar 

  • Fraga MF, Ballestar E, Paz MF, Ropero S, Setien F, Ballestar ML, Heine-Suner D, Cigudosa JC, Urioste M, Benitez J, Boix-Chornet M, Sanchez-Aguilera A, Ling C, Carlsson E, Poulsen P, Vaag A, Stephan Z, Spector TD, Wu YZ, Plass C, Esteller M (2005) Epigenetic differences arise during the lifetime of monozygotic twins. Proc Natl Acad Sci USA 102:10604–10609

    Article  CAS  PubMed  Google Scholar 

  • Grattagliano I, Russmann S, Diogo C, Bonfrate L, Oliveira PJ, Wang DQ, Portincasa P (2011) Mitochondria in chronic liver disease. Curr Drug Targets 12:879–893

    Article  CAS  PubMed  Google Scholar 

  • Griffiths EJ (2012) Mitochondria and heart disease. Adv Exp Med Biol 942:249–267

    Article  CAS  PubMed  Google Scholar 

  • Haddad DM, Vilain S, Vos M, Esposito G, Matta S, Kalscheuer VM, Craessaerts K, Leyssen M, Nascimento RM, Vianna-Morgante AM, De Strooper B, Van Esch H, Morais VA, Verstreken P (2013) Mutations in the intellectual disability gene Ube2a cause neuronal dysfunction and impair parkin-dependent mitophagy. Mol Cell 50:831–843

    Article  CAS  PubMed  Google Scholar 

  • Hansen A (2007) Olfactory and solitary chemosensory cells: two different chemosensory systems in the nasal cavity of the American alligator, Alligator mississippiensis. BMC Neurosci 8:64

    Article  PubMed Central  PubMed  Google Scholar 

  • Hashiguchi K, Zhang-Akiyama QM (2009) Establishment of human cell lines lacking mitochondrial DNA. Methods Mol Biol 554:383–391

    Article  CAS  PubMed  Google Scholar 

  • Hazkani-Covo E, Graur D (2007) A comparative analysis of numt evolution in human and chimpanzee. Mol Biol Evol 24:13–18

    Article  CAS  PubMed  Google Scholar 

  • Hazkani-Covo E, Zeller RM, Martin W (2010) Molecular poltergeists: mitochondrial DNA copies (numts) in sequenced nuclear genomes. PLoS Genet 6:e1000834

    Article  PubMed Central  PubMed  Google Scholar 

  • Hong EE, Okitsu CY, Smith AD, Hsieh CL (2013) Regionally specific and genome-wide analyses conclusively demonstrate the absence of CpG methylation in human mitochondrial DNA. Mol Cell Biol 33:2683–2690

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, Wiencke JK, Kelsey KT (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform 13:86

    Article  Google Scholar 

  • Iacobazzi V, Castegna A, Infantino V, Andria G (2013) Mitochondrial DNA methylation as a next-generation biomarker and diagnostic tool. Mol Genet Metab 110:25–34

    Article  CAS  PubMed  Google Scholar 

  • Infantino V, Castegna A, Iacobazzi F, Spera I, Scala I, Andria G, Iacobazzi V (2011) Impairment of methyl cycle affects mitochondrial methyl availability and glutathione level in Down’s syndrome. Mol Genet Metab 102:378–382

    Article  CAS  PubMed  Google Scholar 

  • James AM, Collins Y, Logan A, Murphy MP (2012) Mitochondrial oxidative stress and the metabolic syndrome. Trends Endocrinol Metab 23:429–434

    Article  CAS  PubMed  Google Scholar 

  • Kim JA, Wei Y, Sowers JR (2008) Role of mitochondrial dysfunction in insulin resistance. Circ Res 102:401–414

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi H, Sakurai T, Imai M, Takahashi N, Fukuda A, Yayoi O, Sato S, Nakabayashi K, Hata K, Sotomaru Y, Suzuki Y, Kono T (2012) Contribution of intragenic DNA methylation in mouse gametic DNA methylomes to establish oocyte-specific heritable marks. PLoS Genet 8:e1002440

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kroemer G (2006) Mitochondria in cancer. Oncogene 25:4630–4632

    Article  CAS  PubMed  Google Scholar 

  • Kucej M, Kucejova B, Subramanian R, Chen XJ, Butow RA (2008) Mitochondrial nucleoids undergo remodeling in response to metabolic cues. J Cell Sci 121:1861–1868

    Article  CAS  PubMed  Google Scholar 

  • Kudriashova IB, Kirnos MD, Vaniushin BF (1976) DNA-methylase activities from animal mitochondria and nuclei: different specificity of DNA methylation. Biokhimiia 41:1968–1977

    CAS  PubMed  Google Scholar 

  • Kuriyama Y, Luck DJ (1974) Methylation and processing of mitochondrial ribosomal RNAs in poky and wild-type Neurospora crassa. J Mol Biol 83:253–266

    Article  CAS  PubMed  Google Scholar 

  • Kurochkin IO, Etzkorn M, Buchwalter D, Leamy L, Sokolova IM (2011) Top-down control analysis of the cadmium effects on molluscan mitochondria and the mechanisms of cadmium-induced mitochondrial dysfunction. Am J Physiol Regul Integr Comp Physiol 300:R21–R31

    Article  CAS  PubMed  Google Scholar 

  • Lee HC, Wei YH (2012) Mitochondria and aging. Adv Exp Med Biol 942:311–327

    Article  CAS  PubMed  Google Scholar 

  • Leigh-Brown S, Enriquez JA, Odom DT (2010) Nuclear transcription factors in mammalian mitochondria. Genome Biol 11:215

    Article  PubMed Central  PubMed  Google Scholar 

  • Lewin R (1987) The unmasking of mitochondrial Eve. Science 238:24–26

    Article  CAS  PubMed  Google Scholar 

  • Lin Y, Sun X, Qiu L, Wei J, Huang Q, Fang C, Ye T, Kang M, Shen H, Dong S (2013) Exposure to bisphenol A induces dysfunction of insulin secretion and apoptosis through the damage of mitochondria in rat insulinoma (INS-1) cells. Cell Death Dis 4:e460

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Madamanchi NR, Runge MS (2007) Mitochondrial dysfunction in atherosclerosis. Circ Res 100:460–473

    Article  CAS  PubMed  Google Scholar 

  • Maekawa M, Taniguchi T, Higashi H, Sugimura H, Sugano K, Kanno T (2004) Methylation of mitochondrial DNA is not a useful marker for cancer detection. Clin Chem 50:1480–1481

    Article  CAS  PubMed  Google Scholar 

  • Manev H, Dzitoyeva S, Chen H (2012) Mitochondrial DNA: a blind spot in neuroepigenetics. Biomol Concepts 3:107–115

    Article  PubMed Central  PubMed  Google Scholar 

  • Manoli I, Alesci S, Blackman MR, Su YA, Rennert OM, Chrousos GP (2007) Mitochondria as key components of the stress response. Trends Endocrinol Metab 18:190–198

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Fernandez E, Gil-Peralta A, Garcia-Lozano R, Chinchon I, Aguilera I, Fernandez-Lopez O, Arenas J, Campos Y, Bautista J (2001) Mitochondrial disease and stroke. Stroke 32:2507–2510

    Article  CAS  PubMed  Google Scholar 

  • Mathews CE, McGraw RA, Dean R, Berdanier CD (1999) Inheritance of a mitochondrial DNA defect and impaired glucose tolerance in BHE/Cdb rats. Diabetologia 42:35–40

    Article  CAS  PubMed  Google Scholar 

  • Mercer TR, Neph S, Dinger ME, Crawford J, Smith MA, Shearwood AM, Haugen E, Bracken CP, Rackham O, Stamatoyannopoulos JA, Filipovska A, Mattick JS (2011) The human mitochondrial transcriptome. Cell 146:645–658

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mortiboys H, Aasly J, Bandmann O (2013) Ursocholanic acid rescues mitochondrial function in common forms of familial Parkinson’s disease. Brain 136:3038–3050

    Article  PubMed  Google Scholar 

  • Motorin Y, Helm M (2011) RNA nucleotide methylation. Wiley Interdiscip Rev RNA 2:611–631

    Article  CAS  PubMed  Google Scholar 

  • Mourier T, Hansen AJ, Willerslev E, Arctander P (2001) The human genome project reveals a continuous transfer of large mitochondrial fragments to the nucleus. Mol Biol Evol 18:1833–1837

    Article  CAS  PubMed  Google Scholar 

  • Mushkambarov NN, Votrin II, Debov SS (1976) Methylation of preformed DNA in rat liver cell nuclei and mitochondria. Dokl Akad Nauk SSSR 229:1255–1257

    CAS  PubMed  Google Scholar 

  • Nass MM (1973) Differential methylation of mitochondrial and nuclear DNA in cultured mouse, hamster and virus-transformed hamster cells. In vivo and in vitro methylation. J Mol Biol 80:155–175

    Article  CAS  PubMed  Google Scholar 

  • Newsholme P, Gaudel C, Krause M (2012) Mitochondria and diabetes. An intriguing pathogenetic role. Adv Exp Med Biol 942:235–247

    Article  CAS  PubMed  Google Scholar 

  • Nunnari J, Suomalainen A (2012) Mitochondria: in sickness and in health. Cell 148:1145–1159

    Article  CAS  PubMed  Google Scholar 

  • Pickles S, Destroismaisons L, Peyrard SL, Cadot S, Rouleau GA, Brown RH Jr, Julien JP, Arbour N, Vande Velde C (2013) Mitochondrial damage revealed by immunoselection for ALS-linked misfolded SOD1. Hum Mol Genet 22:3947–3959

    Article  CAS  PubMed  Google Scholar 

  • Pirola CJ, Gianotti TF, Burgueno AL, Rey-Funes M, Loidl CF, Mallardi P, Martino JS, Castano GO, Sookoian S (2013) Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut 62:1356–1363

    Article  CAS  PubMed  Google Scholar 

  • Pollack Y, Kasir J, Shemer R, Metzger S, Szyf M (1984) Methylation pattern of mouse mitochondrial DNA. Nucleic Acids Res 12:4811–4824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Puddu P, Puddu GM, Cravero E, De Pascalis S, Muscari A (2007) The putative role of mitochondrial dysfunction in hypertension. Clin Exp Hypertens 29:427–434

    Article  CAS  PubMed  Google Scholar 

  • Rebelo AP, Williams SL, Moraes CT (2009) In vivo methylation of mtDNA reveals the dynamics of protein–mtDNA interactions. Nucleic Acids Res 37:6701–6715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rorbach J, Minczuk M (2012) The post-transcriptional life of mammalian mitochondrial RNA. Biochem J 444:357–373

    Article  CAS  PubMed  Google Scholar 

  • Schrier SA, Falk MJ (2011) Mitochondrial disorders and the eye. Curr Opin Ophthalmol 22:325–331

    Article  PubMed Central  PubMed  Google Scholar 

  • Seo AY, Joseph AM, Dutta D, Hwang JC, Aris JP, Leeuwenburgh C (2010) New insights into the role of mitochondria in aging: mitochondrial dynamics and more. J Cell Sci 123:2533–2542

    Article  CAS  PubMed  Google Scholar 

  • Sharma K, Karl B, Mathew AV, Gangoiti JA, Wassel CL, Saito R, Pu M, Sharma S, You YH, Wang L, Diamond-Stanic M, Lindenmeyer MT, Forsblom C, Wu W, Ix JH, Ideker T, Kopp JB, Nigam SK, Cohen CD, Groop PH, Barshop BA, Natarajan L, Nyhan WL, Naviaux RK (2013) Metabolomics reveals signature of mitochondrial dysfunction in diabetic kidney disease. J Am Soc Nephrol 24:1901–1912

    Article  CAS  PubMed  Google Scholar 

  • Shmookler Reis RJ, Goldstein S (1983) Mitochondrial DNA in mortal and immortal human cells. Genome number, integrity, and methylation. J Biol Chem 258:9078–9085

    CAS  PubMed  Google Scholar 

  • Shock LS, Thakkar PV, Peterson EJ, Moran RG, Taylor SM (2011) DNA methyltransferase 1, cytosine methylation, and cytosine hydroxymethylation in mammalian mitochondria. Proc Natl Acad Sci USA 108:3630–3635

    Article  CAS  PubMed  Google Scholar 

  • Shrikhande DY, Kalakoti P, Syed MM, Ahya K, Singh G (2010) A rare mitochondrial disorder: Leigh syndrome—a case report. Ital J Pediatr 36:62

    Article  PubMed Central  PubMed  Google Scholar 

  • Song L, James SR, Kazim L, Karpf AR (2005) Specific method for the determination of genomic DNA methylation by liquid chromatography-electrospray ionization tandem mass spectrometry. Anal Chem 77:504–510

    Article  CAS  PubMed  Google Scholar 

  • Stuwe SH, Goetze O, Lukas C, Klotz P, Hoffmann R, Banasch M, Orth M, Schmidt WE, Gold R, Saft C (2013) Hepatic mitochondrial dysfunction in manifest and premanifest Huntington disease. Neurology 80:743–746

    Article  PubMed  Google Scholar 

  • Sultana R, Baglioni M, Cecchetti R, Cai J, Klein JB, Bastiani P, Ruggiero C, Mecocci P, Butterfield DA (2013) Lymphocyte mitochondria: toward identification of peripheral biomarkers in the progression of Alzheimer disease. Free Radic Biol Med 65C:595–606

    Article  Google Scholar 

  • Sun C, Reimers LL, Burk RD (2011) Methylation of HPV16 genome CpG sites is associated with cervix precancer and cancer. Gynecol Oncol 121:59–63

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sun Z, Terragni J, Borgaro JG, Liu Y, Yu L, Guan S, Wang H, Sun D, Cheng X, Zhu Z, Pradhan S, Zheng Y (2013) High-resolution enzymatic mapping of genomic 5-hydroxymethylcytosine in mouse embryonic stem cells. Cell Rep 3:567–576

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor RW, Turnbull DM (2005) Mitochondrial DNA mutations in human disease. Nat Rev Genet 6:389–402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vafai SB, Mootha VK (2012) Mitochondrial disorders as windows into an ancient organelle. Nature 491:374–383

    Article  CAS  PubMed  Google Scholar 

  • Vamecq J, Dessein AF, Fontaine M, Briand G, Porchet N, Latruffe N, Andreolotti P, Cherkaoui-Malki M (2012) Mitochondrial dysfunction and lipid homeostasis. Curr Drug Metab 13:1388–1400

    Article  CAS  PubMed  Google Scholar 

  • van Oven M, Kayser M (2009) Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation. Hum Mutat 30:E386–E394

    Article  PubMed  Google Scholar 

  • Yelverton JC, Arnos K, Xia XJ, Nance WE, Pandya A, Dodson KM (2013) The clinical and audiologic features of hearing loss due to mitochondrial mutations. Otolaryngol Head Neck Surg 148:1017–1022

    Article  PubMed  Google Scholar 

  • Yorns WR Jr, Valencia I, Jayaraman A, Sheth S, Legido A, Goldenthal MJ (2012) Buccal swab analysis of mitochondrial enzyme deficiency and DNA defects in a child with suspected myoclonic epilepsy and ragged red fibers (MERRF). J Child Neurol 27:398–401

    Article  PubMed  Google Scholar 

  • Yu E, Mercer J, Bennett M (2012) Mitochondria in vascular disease. Cardiovasc Res 95:173–182

    Article  CAS  PubMed  Google Scholar 

  • Zhang ZW, Cheng J, Xu F, Chen YE, Du JB, Yuan M, Zhu F, Xu XC, Yuan S (2011) Red blood cell extrudes nucleus and mitochondria against oxidative stress. IUBMB Life 63:560–565

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyang-Min Byun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Byun, HM., Baccarelli, A.A. Environmental exposure and mitochondrial epigenetics: study design and analytical challenges. Hum Genet 133, 247–257 (2014). https://doi.org/10.1007/s00439-013-1417-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00439-013-1417-x

Keywords

Navigation