Skip to main content
Log in

Effects of adaptive exercise on apoptosis in cells of rat renal tubuli

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Regular exercise is known to improve physiological and functional capacity of many organs due to adaptive processes. We have previously shown that acute exercise in untrained rats results in apoptosis of renal tubular cells and that the apoptotic process seems to be associated with stimulation of angiotensin II, AT1 and AT2 receptors. In this study, we examined the influence of regular training on apoptosis and the role of angiotensin II receptors and antioxidant enzymes in mediating the adaptive response in renal tubular cells. We measured apoptosis, expression of AT1 and AT2 receptors, level of lipid peroxidation (TBARS) and activities of antioxidant enzymes, SOD, GPx and CAT in kidneys of sedentary rats that were exposed to acute exercise and rats that were trained for 8 weeks. In untrained animals, the acute exercise resulted in increased apoptosis and increased expression of AT1 and AT2 receptors in renal tubular cells, while in the rats exposed to the 8-week regular training, there were no changes in apoptosis nor AT1 and AT2 receptor expression as compared to the sedentary animals. The TBARS levels were significantly increased in acutely exercised rats, while in rats pre-exposed to the training they remained unchanged. The acute exercise, as well as regular training, did not change SOD, CAT or GPx activities. These findings suggested that the acute exercise-induced apoptosis in renal tubules could involve action of AT1 and AT2 receptors as well as oxidative stress, while the regular training was shown to prevent apoptosis in renal tubular cells via modulated expression of AT1 and AT2 receptors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adams V, Linke A, Krankel N, Erbs S, Gielen S, Mobius-Winkler S, Gummert JF, Mohr FM, Schuler G, Hambrecht R (2005) Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation 111(5):555–562

    Article  PubMed  CAS  Google Scholar 

  • Aebi H (1984) Catalase in vitro. Meth Enzymol 105:121–126

    Article  PubMed  CAS  Google Scholar 

  • Arslan S, Erdem S, Kilinc K, Sivri A, Tan E, Hascelik Z (2001) Free radical changes in rat muscle tissue after exercise. Rheumatol Int 20:109–112

    Article  PubMed  CAS  Google Scholar 

  • Aydin C, Ince E, Koparan S, Cangul IT, Naziroglu M, Ak F (2005) Protective effects of long term dietary restriction on swimming exercise-induced oxidative stress in the liver, heart and kidney of rat. Cell Biochem Funct—Epub ahead of print

  • Azenabor AA, Hoffman-Goetz L (1999) Intrathymic and intrasplenic oxidative stress mediates thymocyte and splenocyte damage in acutely exercised mice. J Appl Physiol 86(6):1823–1827

    PubMed  CAS  Google Scholar 

  • Balog T, Sobočanec S, Šverko V, Krolo I, Ročić B, Marotti M, Marotti T (2006) The influence of season on oxidant-antioxidant status in trained and sedentary subjects. Life Sci 78:1441–1447

    Article  PubMed  CAS  Google Scholar 

  • Belter JG, Carrey HV, Garland T Jr (2004) Effects of voluntary exercise and genetic selection for high activity levels on HSP72 expression in house mice. J Appl Physiol 96:1270–1276

    Article  PubMed  CAS  Google Scholar 

  • Benderitter M, Hadj-saad F, Lhuissier M, Maupoil V, Guilland J-C, Rochette L (1996) Effects of exhaustive exercise and vitamin B6 deficiency on free radical oxidative process in male trained rats. Free Radic Biol Med 21(4):541–549

    Article  PubMed  CAS  Google Scholar 

  • Bhaskaran M, Reddy K, Radhakrishanan N, Franki N, Ding G, Singhal PC (2003) Angiotensin II induces apoptosis in renal proximal tubular cells. Am J Physiol Renal Physiol 284:F955–F965

    PubMed  CAS  Google Scholar 

  • Bobillier Chaumont S, Maupoil V, Lahet JJ, Berthelot A (2001) Effect of exercise training in metallothionein levels of hypertensive rats. Med Sci Sport Exerc 33:724–728

    Article  CAS  Google Scholar 

  • Bonnet F, Cao Z, Cooper ME (2001) Apoptosis and angiotensin II: yet another renal regulatory system? Exp Nephrol 9:295–300

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Kelly DR, Cox A, Casley D, Forbes JM, Martinello P, Dean R, Gilbert RE, Cooper ME (2000) Angiotensin type 2 receptor is expressed in the adult rat kidney and promotes cellular proliferation and apoptosis. Kidney Int 58:2437–2451

    Article  PubMed  CAS  Google Scholar 

  • Cao Z, Bonnet F, Candido R, Nesteroff SP, Burns WC, Kawachi H, Shimizu F, Carey RM, De Gasparo M, Cooper ME (2002) Angiotensin type 2 receptor antagonism confers renal protection in rat model of progressive renal injury. J Am Soc Nephrol 13:1773–1787

    Article  PubMed  CAS  Google Scholar 

  • Chicco AJ, Hydock DS, Schneider CM, Hayward R (2005) Low intensity exercise training during doxorubicin treatment protects against cardiotoxicity. J Appl Physiol 100(2):519–527

    Article  PubMed  CAS  Google Scholar 

  • Di Meo S, Venditti P (2001) Mitochondria in exercise-induced oxidative stress. Biol Signals Recept 10(1–2):125–140

    Article  PubMed  CAS  Google Scholar 

  • Donaldson L J (2000) Sport and exercise: the public health challenge. Br J Sports Med 34:409–415

    Article  PubMed  CAS  Google Scholar 

  • Frankiewicz-Jozko A, Faff J, Sieradzan-Gabelska B (1996) Changes in concentration of tissue free radical marker and serum creatine kinase during the post-exercise period in rats. Eur J Appl Physiol Occup Physiol 74(5):470–474

    Article  PubMed  CAS  Google Scholar 

  • Galle J (2001) Oxidative stress in chronic renal failure. Nephrol Dial Transpl 16:2135–2137

    Article  CAS  Google Scholar 

  • Gunduz F, Senturk UK (2003) The effect of reactive oxidant generation in acute exercise-induced proteinuria in trained and untrained rats. Eur J Appl Physiol 90:526–532

    Article  PubMed  CAS  Google Scholar 

  • Gunduz F, Senturk UK, Kuru O, Aktekin B, Aktekin MR (2004) The effect of one year’s swimming exercise on oxidant stress and antioxidant capacity in aged rats. Physiol Res 53:171–176

    PubMed  CAS  Google Scholar 

  • Gwinner W, Grone HJ (2000) Role of reactive oxygen species in glomerulonephritis. Nephrol Dial Transpl 15:1127–1132

    Article  CAS  Google Scholar 

  • Hauser P, Oberbauer R (2002) Tubular apoptosis in the pathophysiology of renal disease. Wien Klin Wochenschr 114(14–15):671–677

    PubMed  CAS  Google Scholar 

  • Hong H, Johnson P (1995) Antioxidant enzyme activities and lipid peroxidation levels in exercised and hypertensive rat tissues. Int J Biochem Cell Biol 27(9):923–931

    Article  PubMed  CAS  Google Scholar 

  • Ji LL (1993) Antioxidant enzyme response to exercise and aging. Med Sci Sports Exerc 25(2):225–231

    PubMed  CAS  Google Scholar 

  • Ji LL (1996) Exercise, oxidative stress, and antioxidants. Am J.Sports Med 24:S20–S24

    PubMed  CAS  Google Scholar 

  • Ji LL (2002) Exercised-induced modulation of antioxidant defense. Ann NY Acad Sci 959:82–92

    Article  PubMed  CAS  Google Scholar 

  • Jin H, Yang R, Li W, Lu H, Ryan AM, Ogasawara AK, van Peborgh J, Paoni NF (2000) Effects of exercise training on cardiac function, gene expression, and apoptosis in rats. Am J Physiol Heart Circ Physiol 279:H2994–H3002

    PubMed  CAS  Google Scholar 

  • Kohut ML, Thompson JR, Lee W, Cunnick JE (2004) Exercise training-induced adaptation of immune response are mediated by β-adrenergic receptors in aged but not young mice. J Appl Physiol 96:1312–1322

    Article  PubMed  CAS  Google Scholar 

  • Lin YS, Kuo HL, Kuo C, Wang S, Yang B, Chen H (1999) Antioxidant administration inhibits exercise-induced thymocyte apoptosis in rats. Med Sci Sports Exerc 31(11):1594–1598

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Yeo HC, Overvik-Douki E, Hagen T, Doniger SJ, Chyu DW, Brooks GA, Ames BN (2000) Chronically and acutely exercised rats: biomarkers of oxidative stress and endogenous antioxidants. J Appl Physiol 89:21–28

    PubMed  CAS  Google Scholar 

  • Lowry OH, Rosebrough AG, Farr RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–273

    PubMed  CAS  Google Scholar 

  • Miyazaki H, Oh-ishi S, Ookawara T, Kizaki T, Toshinai K, Ha S, Haga S, Ji LL (2001) Strenuous endurance training in humans reduces oxidative stress following exhausting exercise. Eur J Appl Physiol 84(1–2):1–6

    Article  PubMed  CAS  Google Scholar 

  • Morel P, Fauconneau B, Page G, Mirbeau T, Huguet F (1998) Inhibitory effects on ascorbic acid on dopamine uptake by rat striatal synaptosomes: relationship to lipid peroxidation and oxidation of protein sulfhydryl groups. Neurosci Res 32:171–179

    Article  PubMed  CAS  Google Scholar 

  • Niess AM, Dickhuth HH, Northoff H, Fehrenbach E (1999) Free radicals and oxidative stress in exercise—immunological aspects. Exerc Immunol Rev 5:22–56

    PubMed  CAS  Google Scholar 

  • Nieto JL, Diaz-Laviada I, Malpartida JM, Galve-Roperh I, Haro A (1997) Adaptation of the β-adrenoreceptor-adenylyl cuclase system in rat skeletal muscle to endurance physical training. Pflugers Arch 434:809–814

    Article  PubMed  CAS  Google Scholar 

  • Oberbauer R, Schwarz C, Regele HM, Hansmann C, Meyer TW, Meyer G (2001) Regulation of renal tubular cell apoptosis and proliferation after ischemic injury to a solitary kidney. J Lab Clin Med 138(5):343–351

    Article  PubMed  CAS  Google Scholar 

  • Oh-ishi S, Kizaki T, Ookawara T, Sakurai T, Izawa T, Nagata N, Ohno H (1997) Endurance training improves the resistance of rat diaphragm to exercise-induced oxidative stress. Am J Crit Care Med 156:1579–1585

    CAS  Google Scholar 

  • Oztasan N, Taysi S, Gumustekin K, Altinkaynak K, Aktas O, Timur H, Siktar E, Keles S, Akar S, Akcay F, Dane S, Gul M (2004) Endurance training attenuates exercise-induced oxidative stress in erythrocytes in rat. Eur J Appl Physiol 91:622–627

    Article  PubMed  CAS  Google Scholar 

  • Padanilam BJ (2003) Cell death induced by acute renal injury: a perspective on the contributions of apoptosis and necrosis. Am J Physiol Renal Physiol 284:F608–F627

    PubMed  CAS  Google Scholar 

  • Pedersen BK, Hoffman-Goetz L (2000) Exercise and the immune system: regulation, integration, and adaptation. Physiol Rev 80:1055–1081

    PubMed  CAS  Google Scholar 

  • Penkowa M, Keller P, Keller C, Hidalgo J, Giralt M, Pedersen BK (2005) Exercise-induced metallothionein expression in human skeletal muscle fibres. Exp Physiol 90(4):477–486

    Article  PubMed  CAS  Google Scholar 

  • Phaneuf S, Leeuwenburgh C (2000) Apoptosis and exercise. Med Sci Sports Exerc 33(3):393–396

    Google Scholar 

  • Podhorska-Okolow M, Sandri M, Zampieri S, Brun B, Rossini K, Carraro U (1998) Apoptosis of myofibers and satellite cells: exercise-induced damage in skeletal muscle of the mouse. Neuropathol Appl Neurobiol 24:518–531

    Article  PubMed  CAS  Google Scholar 

  • Podhorska-Okolow M, Krajewska B, Carraro U, Zabel M (1999) Apotosis in mouse skeletal muscles after physical exercise. Folia Histochem Cytobiol 37(2):127–128

    PubMed  CAS  Google Scholar 

  • Podhorska-Okolow M, Dziegiel P, Gomulkiewicz A, Dolinska-Krajewska B, Murawska-Cialowicz E, Jethon Z, Zabel M (2004a) The role of AT1 and AT2 angiotensin receptors in the mechanism of apoptosis in renal tubular cells after physical exercise. Rocz Akad Med Bialymst 49(Suppl 1):8–10

    CAS  Google Scholar 

  • Podhorska-Okolow M, Dziegiel P, Murawska-Cialowicz E, Krajewska B, Ciesielska U, Jethon Z, Zabel M (2004b) Exercise-induced apoptosis in the renal tubular cells of the rat. Folia Morphol 63:213–216

    Google Scholar 

  • Podhorska-Okolow M, Dziegiel P, Gomulkiewicz A, Kisiela D, Dolinska-Krajewska B, Jethon Z, Carraro U, Zabel M (2006) Exercise-induced apoptosis in rat kidney is mediated by both angiotensin AT1 and AT2 receptors. Histol Histopathol 21:459–466

    PubMed  CAS  Google Scholar 

  • Pohlman TH, Harlan JM (2000) Adaptive responses of the endothelium to stress. J Surg Res 89:85–119

    Article  PubMed  CAS  Google Scholar 

  • Ray CA, Hume KM (1998) Sympathetic neural adaptation to exercise training in humans: insight from microneurography. Med Sci Sports Exerc 30(3):387–391

    PubMed  CAS  Google Scholar 

  • Reddy Avula CP, Fernandez G (1999) Modulation of antioxidant enzymes and lipid peroxidation in salivary gland and other tissues in mice by moderate treadmill exercise. Aging (Milano) 11(4):246–252

    CAS  Google Scholar 

  • Rus RR, Ponikvar R, Kenda RB, Buturovic-Ponikvar J (2003) Effect of local physical training on the forearm arteries and veins in patients with end-stage renal disease. Blood Purif 21:389–394

    Article  PubMed  Google Scholar 

  • Semin I, Acikgoz O, Gonenc S, Uysal N, Kayatekin BM (2001) Antioxidant enzyme levels in intestinal and renal tissues after a 60-minute exercise in untrained mice. Acta Physiol Hung 88(1):55–62

    Article  PubMed  CAS  Google Scholar 

  • Siragy HM (2004) AT1 and AT2 receptor in the kidney: role in health and disease. Semin Nephrol 24(2):93–100

    Article  PubMed  CAS  Google Scholar 

  • Siu P, Bryner RW, Martyn JK, Alwy SE (2004) Apoptotic adaptations from exercise training in skeletal and cardiac muscles. FASEB J 18(10):1150–1162

    PubMed  CAS  Google Scholar 

  • Weidekamm C, Hauser P, Hansmann C, Schwarz C, Klingler H, Mayer G, Oberbauer R (2002) Effects of AT1 and AT2 receptor blockade on angiotensin II induces apoptosis of human renal proximal tubular epithelial cells. Wien Klin Wochenschr 114(15–16):725–729

    PubMed  CAS  Google Scholar 

  • Wolf G (2000a) Angiotensin II as a mediator of tubulointerstitial injury. Nephrol Dial Transplant 15(Suppl 6):61–63

    Article  CAS  Google Scholar 

  • Wolf G (2000b) Free radical production and angiotensin. Curr Hypertens Rep 2(2):167–173

    CAS  Google Scholar 

  • Zhan Y, van de Water B, Wang Y, Stevens JL (1999) The roles of caspase-3 and bcl-2 in chemically-induced apoptosis but not necrosis of renal epithelial cells. Oncogene 18(47):6505–6512

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the Polish Ministry of Science No 3 PO5D 090 23.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marzena Podhorska-Okolow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Podhorska-Okolow, M., Dziegiel, P., Murawska-Cialowicz, E. et al. Effects of adaptive exercise on apoptosis in cells of rat renal tubuli. Eur J Appl Physiol 99, 217–226 (2007). https://doi.org/10.1007/s00421-006-0335-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-006-0335-1

Keywords

Navigation