Skip to main content

Advertisement

Log in

Deciphering the role of circulating lncRNAs: RNCR2, NEAT2, CDKN2B-AS1, and PVT1 and the possible prediction of anti-VEGF treatment outcomes in diabetic retinopathy patients

  • Basic Science
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Purpose

Putative roles of long non-coding RNAs (lncRNAs) as indicators for diabetic retinopathy (DR) and associated complications are beginning to emerge. We aimed to evaluate a panel of circulating hyperglycemia-related lncRNAs: RNCR2, NEAT2, CDKN2B-AS1, and PVT1 in type 2 diabetes patients with/without DR and to correlate their levels with the clinical characteristics and response to aflibercept intravitreal injection in terms of visual acuity (VA) improvement, central macular thickness (CMT) decline, and macular edema resolution after 4 weeks of the initial injection.

Methods

Pre-treatment plasma relative expression levels of the specified lncRNAs were quantified in 130 consecutive patients with diabetes (75 and 55 with/without DR, respectively) and 108 controls using quantitative real-time PCR.

Results

One month after aflibercept injection, significant reductions in CMT and VA were observed in DR cohorts. The four lncRNAs were over-expressed in DM compared with those in controls. However, downregulated baseline plasma levels of RNCR2 and NEAT2 were observed in glycemic-controlled DR patients. None of the lncRNAs showed a correlation with the severity of retinopathy or drug response.

Conclusion

Though circulating levels of the analyzed lncRNAs did not show an association with DR progression or aflibercept therapy response, the expression pattern demonstrated good diagnostic performance in differentiating DM from controls and DR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Antonetti DA, Klein R, Gardner TW (2012) Diabetic retinopathy. N Engl J Med 366:1227–1239. https://doi.org/10.1056/NEJMra1005073

    Article  CAS  Google Scholar 

  2. Duh EJ, Sun JK, Stitt AW (2017) Diabetic retinopathy: current understanding, mechanisms, and treatment strategies. JCI Insight 2:e93751. https://doi.org/10.1172/jci.insight.93751

    Article  PubMed Central  Google Scholar 

  3. Stitt AW, urtis TM, Chen M, Medina RJ, McKay GJ, Jenkins A, Gardiner TA, Lyons TJ, Hammes HP, Simó R, Lois N (2016) The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 51:156–186. https://doi.org/10.1016/j.preteyeres.2015.08.001

    Article  PubMed  Google Scholar 

  4. Zhang X, Zeng H, Bao S, Wang N, Gillies MC (2014) Diabetic macular edema: new concepts in patho-physiology and treatment. Cell Biosci 4:27. https://doi.org/10.1186/2045-3701-4-27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tremolada G, Del Turco C, Lattanzio R, Maestroni S, Maestroni A, Bandello F, Zerbini G (2012) The role of angiogenesis in the development of proliferative diabetic retinopathy: impact of intravitreal anti-VEGF treatment. Exp Diabetes Res 2012:728325. https://doi.org/10.1155/2012/728325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bahrami B, Hong T, Gilles MC, Chang A (2017) Anti-VEGF therapy for diabetic eye diseases. Asia Pac J Ophthalmol (Phila) 6:535–545. https://doi.org/10.22608/APO.2017350

    Article  CAS  Google Scholar 

  7. Cai S, Yang Q, Li X, Zhang Y (2018) The efficacy and safety of aflibercept and conbercept in diabetic macular edema. Drug Design, Development and Therapy 12:3471–3483. https://doi.org/10.2147/DDDT.S177192

    Article  PubMed  PubMed Central  Google Scholar 

  8. Cabral T, Mello LGM, Lima LH, Polido J, Regatieri CV, Belfort R Jr, Mahajan VB (2017) Retinal and choroidal angiogenesis: a review of new targets. Int J Retina Vitreous 3(31). https://doi.org/10.1186/s40942-017-0084-9

  9. Campos Polo R, Rubio Sánchez C, García Guisado DM, Díaz Luque MJ (2018) Aflibercept for clinically significant diabetic macular edema: 12-month results in daily clinical practice. Clin Ophthalmol 12:99–104. https://doi.org/10.2147/OPTH.S154421

    Article  PubMed  PubMed Central  Google Scholar 

  10. Gong Q, Su G (2017) Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep 37. pii: BSR20171157. https://doi.org/10.1042/BSR20171157

  11. Kashi K, Henderson L, Bonetti A, Carninci P (2016) Discovery and functional analysis of lncRNAs: methodologies to investigate an uncharacterized transcriptome. Biochim Biophys Acta 1859:3–15. https://doi.org/10.1016/j.bbagrm.2015.10.010

    Article  CAS  PubMed  Google Scholar 

  12. Sathishkumar C, Prabu P, Mohan V, Balasubramanyam M (2018) Linking a role of lncRNAs (long non-coding RNAs) with insulin resistance, accelerated senescence, and inflammation in patients with type 2 diabetes. Hum Genomics 12(41). https://doi.org/10.1186/s40246-018-0173-3

  13. Raut SK, Khullar M (2018) The big entity of new RNA world: long non-coding RNAs in microvascular complications of diabetes. Front Endocrinol (Lausanne) 9(300). https://doi.org/10.3389/fendo.2018.00300

  14. Fawzy MS, Abu AlSel BT, Al Ageeli E, Al-Qahtani SA, Abdel-Daim MM, Toraih EA (2018) Long non-coding RNA MALAT1 and microRNA-499a expression profiles in diabetic ESRD patients undergoing dialysis: a preliminary cross-sectional analysis. Arch Physiol Biochem 29:1–11. https://doi.org/10.1080/13813455.2018.1499119

    Article  CAS  Google Scholar 

  15. Yan B, Tao ZF, Li XM, Zhang H, Yao J, Jiang Q (2014) Aberrant expression of long noncoding RNAs in early diabetic retinopathy. Invest Ophthalmol Vis Sci 55:941–951. https://doi.org/10.1167/iovs.13-13221

    Article  CAS  PubMed  Google Scholar 

  16. Bhat SA, Ahmad SM, Mumtaz PT, Malik AA, Dar MA, Urwat U, Shah RA, Ganai NA (2016) Long non-coding RNAs: mechanism of action and functional utility. Noncoding RNA Res 1:43–50. https://doi.org/10.1016/j.ncrna.2016.11.002

    Article  PubMed  PubMed Central  Google Scholar 

  17. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43:904–914. https://doi.org/10.1016/j.molcel.2011.08.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361. https://doi.org/10.1016/j.tcb.2011.04.001

    Article  CAS  Google Scholar 

  19. Yan BA, Yao J, Liu JY, Li XM, Wang XQ, Li YJ, Tao ZF, Song YC, Chen Q, Jiang Q (2015) lncRNA-MIAT regulates microvascular dysfunction by functioning as a competing endogenous RNA. Circ Res 116:1143–1156. https://doi.org/10.1161/CIRCRESAHA.116.305510

    Article  CAS  PubMed  Google Scholar 

  20. Yu B, Wang S (2018) Angio-LncRs: LncRNAs that regulate angiogenesis and vascular disease. Theranostics 8:3654–3675. https://doi.org/10.7150/thno.26024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Michalik KM, You X, Manavski Y, Doddaballapur A, Zörnig M, Braun T, John D, Ponomareva Y, Chen W, Uchida S, Boon RA, Dimmeler S (2014) Long noncoding RNA MALAT1 regulates endothelial cell function and vessel growth. Circ Res 114:1389–1397. https://doi.org/10.1161/CIRCRESAHA.114.303265

    Article  CAS  PubMed  Google Scholar 

  22. Congrains A, Kamide K, Ohishi M, Rakugi H (2013) ANRIL: Molecular mechanisms and implications in human health. Int J Mol Sci 14:1278–1292. https://doi.org/10.3390/ijms14011278

  23. Alvarez ML, Khosroheidari M, Eddy E, Kiefer J (2013) Role of microRNA 1207-5P and its host gene, the long non-coding RNA Pvt1, as mediators of extracellular matrix accumulation in the kidney: implications for diabetic nephropathy. PLoS One 8:e77468. https://doi.org/10.1371/journal.pone.0077468

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Majeed A, El-Sayed AA, Khoja T, Alshamsan R, Millett C, Rawaf S (2014) Diabetes in the Middle-East and North Africa: an update. Diabetes Res Clin Pract 103:218–222. https://doi.org/10.1016/j.diabres.2013.11.008

    Article  PubMed  Google Scholar 

  25. No Authors (1991) Early treatment diabetic retinopathy study design and baseline patient characteristics ETDRS report number 7. Ophthalmology 98:741–756

    Article  Google Scholar 

  26. Fawzy MS, Toraih EA, Abdallah HY (2017) Long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (MALAT1): a molecular predictor of poor survival in glioblastoma multiforme in Egyptian patients. Egyptian Journal of Medical Human Genetics 18:231–239. https://doi.org/10.1016/j.ejmhg.2016.08.003

    Article  Google Scholar 

  27. Fakhr-Eldeen A, Toraih EA, Fawzy MS (2019) Long non-coding RNAs MALAT1, MIAT and ANRIL gene expression profiles in beta-thalassemia patients: a cross-sectional analysis. Hematology 24:308–317. https://doi.org/10.1080/16078454.2019.1570616

    Article  CAS  PubMed  Google Scholar 

  28. Bustin SA, Benes V, Garson JA, Hellemans J, Huggett J, Kubista M, Mueller R, Nolan T, Pfaffl MW, Shipley GL, Vandesompele J, Wittwer CT (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611-622. https://doi.org/10.1373/clinchem.2008.112797

  29. Bustin SA, Benes V, Garson J, Hellemans J, Huggett J, Kubista M et al (2013) The need for transparency and good practices in the qPCR literature. Nat Methods 10:1063–1067. https://doi.org/10.1038/nmeth.2697

    Article  CAS  PubMed  Google Scholar 

  30. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-△△CT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  31. Leasher JL, Bourne RRA, Flaxman SR, Jonas JB, Keeffe J, Naidoo N, Pesudovs K, Price H, White RA, Wong TY, Resnikoff S, Taylor HR (2010) Vision Loss Expert Group of the Global Burden of Disease Study (2016) global estimates on the number of people blind or visually impaired by diabetic retinopathy: a meta-analysis from 1990 to. Diabetes Care 39:1643–1649. https://doi.org/10.2337/dc15-2171

    Article  Google Scholar 

  32. Jaé N, Dimmeler S (2015) Long noncoding RNAs in diabetic retinopathy. Circ Res 116:1104–1106. https://doi.org/10.1161/CIRCRESAHA.115.306051

    Article  CAS  PubMed  Google Scholar 

  33. He X, Ou C, Xiao Y, Han Q, Li H, Zhou S (2017) LncRNAs: key players and novel insights into diabetes mellitus. Oncotarget 8:71325–71341. https://doi.org/10.18632/oncotarget.19921

    Article  PubMed  PubMed Central  Google Scholar 

  34. Goyal N, Kesharwani D, Datta M (2018) Lnc-ing non-coding RNAs with metabolism and diabetes: roles of lncRNAs. Cell Mol Life Sci 75:1827–1837. https://doi.org/10.1007/s00018-018-2760-9

    Article  CAS  PubMed  Google Scholar 

  35. Leti F, DiStefano JK (2017) Long noncoding RNAs as diagnostic and therapeutic targets in type 2 diabetes and related complications. Genes (Basel) 8(8):E207. https://doi.org/10.3390/genes8080207

    Article  CAS  Google Scholar 

  36. Wu Z, Liu X, Liu L, Deng H, Zhang J, Xu Q, Cen B, Ji A (2014) Regulation of lncRNA expression. Cell Mol Biol Lett 19:561–575. https://doi.org/10.2478/s11658-014-0212-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Thomas AA, Feng B, Chakrabarti S (2017) ANRIL: a regulator of VEGF in diabetic retinopathy. Invest Ophthalmol Vis Sci 58:470–480. https://doi.org/10.1167/iovs.16-20569

    Article  CAS  PubMed  Google Scholar 

  38. Zhang J, Chen M, Chen J, Lin S, Cai D, Chen C, Chen Z (2017) Long non-coding RNA MIAT acts as a biomarker in diabetic retinopathy by absorbing miR-29b and regulating cell apoptosis. Biosci Rep 37:BSR20170036. https://doi.org/10.1042/BSR20170036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Toraih EA, El-Wazir A, Alghamdi SA, Alhazmi AS, El-Wazir M, Abdel-Daim MM, Fawzy MS (2019) Association of long non-coding RNA MIAT and MALAT1 expression profiles in peripheral blood of coronary artery disease patients with previous cardiac events. Genet Mol Biol. https://doi.org/10.1590/1678-4685-GMB-2018-0185

  40. Li Q, Pang L, Yang W, Liu X, Su G, Dong Y (2018) Long non-coding RNA of myocardial infarction associated transcript (LncRNA-MIAT) promotes diabetic retinopathy by upregulating transforming growth factor-β1 (TGF-β1) signaling. Med Sci Monit 24:9497–9503. https://doi.org/10.12659/MSM.911787

    Article  PubMed  PubMed Central  Google Scholar 

  41. Liu JY, Yao J, Li XM, Song YC, Wang XQ, Li YJ, Yan B, Jiang Q (2014) Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis 5:e1506. https://doi.org/10.1038/cddis.2014.466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Puthanveetil P, Chen S, Feng B, Gautam A, Chakrabarti S (2015) Long non-coding RNA MALAT1 regulates hyperglycemia induced inflammatory process in the endothelial cells. J Cell Mol Med 19:1418–1425. https://doi.org/10.1111/jcmm.12576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Li X, Zeng L, Cao C, Lu C, Lian W, Han J, Zhang X, Zhang J, Tang T, Li M (2017) Long noncoding RNA MALAT1 regulates renal tubular epithelial pyroptosis by modulated miR-23c targeting of ELAVL1 in diabetic nephropathy. Exp Cell Res 350:327–335. https://doi.org/10.1016/j.yexcr.2016.12.006

    Article  CAS  PubMed  Google Scholar 

  44. Zhang Y, Wu H, Wang F, Ye M, Zhu H, Bu S (2018) Long non-coding RNA MALAT1 expression in patients with gestational diabetes mellitus. Int J Gynecol Obstet 140:164–169. https://doi.org/10.1002/ijgo.12384

    Article  CAS  Google Scholar 

  45. Dhawan S, Georgia S, Tschen SI, Fan G, Bhushan A (2011) Pancreatic beta cell identity is maintained by DNA methylation-mediated repression of Arx. Dev Cell 20:419–429. https://doi.org/10.1016/j.devcel.2011.03.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yan C, Chen J, Chen N (2016) Long noncoding RNA MALAT1 promotes hepatic steatosis and insulin resistance by increasing nuclear SREBP-1c protein stability. Sci Rep 6:22640. https://doi.org/10.1038/srep22640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. de Gonzalo-Calvo D, Kenneweg F, Bang C, Toro R, van der Meer RW, Rijzewijk LJ, Smit JW, Lamb HJ, Llorente-Cortes V, Thum T (2016) Circulating long-non coding RNAs as biomarkers of left ventricular diastolic function and remodelling in patients with well-controlled type 2 diabetes. Sci Rep 6:37354. https://doi.org/10.1038/srep37354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hu M, Wang R, Li X, Fan M, Lin J, Zhen J, Chen L, Zhimei L (2017) LncRNA MALAT1 is dysregulated in diabetic nephropathy and involved in high glucose-induced podocyte injury via its interplay with β-catenin. J Cell Mol Med 21:2732–2747. https://doi.org/10.1111/jcmm.13189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Biswas S, Thomas AA, Chen S, Aref-Eshghi E, Feng B, Gonder J, Sadikovic B, Chakrabarti S (2018) MALAT1: an epigenetic regulator of inflammation in diabetic retinopathy. Sci Rep 8(6526). https://doi.org/10.1038/s41598-018-24907-w

  50. Tsai F-J, Yang C-F, Chen C-C (2010) A genome-wide association study identifies susceptibility variants for type 2 diabetes in Han Chinese. PLoS Genet 6:e1000847. https://doi.org/10.1371/journal.pgen.1000847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kommoju U, Samy S, Maruda J, Irgam K, Kotla JP, Velaga L, Reddy BM (2016) Association of CDKAL1, CDKN2A/B & HHEX gene polymorphisms with type diabetes mellitus in the population of Hyderabad. India Indian J Med Res 143:455–463. https://doi.org/10.4103/0971-5916.184303

    Article  CAS  PubMed  Google Scholar 

  52. Alvarez ML, DiStefano JK (2011) Functional characterization of the plasmacytoma variant translocation 1 gene (PVT1) in diabetic nephropathy. PLoS One 6:e18671. https://doi.org/10.1371/journal.pone.0018671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nittala MG, Keane PA, Zhang K, Sadda SR (2014) Risk factors for proliferative diabetic retinopathy in a Latino American population. Retina 34:1594–1599. https://doi.org/10.1097/IAE.0000000000000117

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gupta A, Delhiwala KS, Raman RP, Sharma T, Srinivasan S, Kulothungan V (2016) Failure to initiate early insulin therapy - a risk factor for diabetic retinopathy in insulin users with type 2 diabetes mellitus: Sankara Nethralaya-diabetic retinopathy epidemiology and molecular genetics study (SN-DREAMS, report number 35). Indian J Ophthalmol 64:440–445. https://doi.org/10.4103/0301-4738.187668

    Article  PubMed  PubMed Central  Google Scholar 

  55. Do DV, Nguyen QD, Boyer D, Schmidt-Erfurth U, Brown DM, Vitti R, Berliner AJ, Gao B, Zeitz O, Ruckert R, Schmelter T, Sandbrink R, Heier JS (2012) One-year outcomes of the da Vinci Study of VEGF Trap-Eye in eyes with diabetic macular edema. Ophthalmology 119:1658–1665. https://doi.org/10.1016/j.ophtha.2012.02.010

    Article  Google Scholar 

  56. Nguyen CL, Lindsay A, Wong E, Chilov M (2018) Aflibercept for diabetic macular oedema: a meta-analysis of randomized controlled trials. Int J Ophthalmol 11:1002–1008

    PubMed  PubMed Central  Google Scholar 

  57. Bahrami B, Hong T, Schlub TE, Chang AA (2019) Aflibercept for persistent diabetic macular edema: forty-eight-week outcomes. Retina 39:61–68. https://doi.org/10.1097/IAE.0000000000002253

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the Center of Excellence in Molecular and Cellular Medicine and the Oncology Diagnostic Unit, Suez Canal University, Ismailia, Egypt, for providing the facilities for performing the molecular work of the current study. The authors also thank all the participants for their approval to join this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manal S. Fawzy.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1516 kb)

ESM 2

(DOCX 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Toraih, E.A., Abdelghany, A.A., Abd El Fadeal, N.M. et al. Deciphering the role of circulating lncRNAs: RNCR2, NEAT2, CDKN2B-AS1, and PVT1 and the possible prediction of anti-VEGF treatment outcomes in diabetic retinopathy patients. Graefes Arch Clin Exp Ophthalmol 257, 1897–1913 (2019). https://doi.org/10.1007/s00417-019-04409-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-019-04409-9

Keywords

Navigation