Skip to main content

Advertisement

Log in

Inverse relationship between macular pigment optical density and axial length in Chinese subjects with myopia

  • Retinal Disorders
  • Published:
Graefe's Archive for Clinical and Experimental Ophthalmology Aims and scope Submit manuscript

Abstract

Background

Macular pigment (MP) has been the focus of much attention in recent years, due to its protective effect against macular degenerations. In this study, we investigated the association between macular pigment optical density (MPOD) and axial length (AL) in Chinese subjects with myopia.

Methods

In total, 173 myopes (mean spherical equivalent [MSE] ≤ -1.00D) were recruited for this prospective observational study. MPOD was measured in both eyes of each subject using a macular metrics densitometer. AL was measured in eyes using an IOL-Master. A raw coefficient of correlation analysis and a partial correlation analysis were used to investigate the relationship between MPOD and AL.

Results

The age of the subjects ranged from 18 to 67 years. The overall mean MPOD for the cohort was 0.412 ± 0.119 (range, 0.105–0.812). The mean AL was 25.18 ± 1.08 mm (range, 23.14–28.19 mm). Using a raw coefficient of correlation, a significant inverse correlation was found between MPOD and AL (r = −0.134, p = 0.012). When using a partial correlation analysis to eliminate the impact of covariant, a significant inverse correlation was also found between MPOD and AL (r = −0.142, p = 0.008). Furthermore, when AL was divided into two groups: AL > 26 mm and AL ≤ 26 mm, a significant inverse correlation was observed between MPOD and AL in the former (r = −0.253, p = 0.029), but no significant relationship was observed between these in the latter (r = 0.104, p = 0.067).

Conclusions

MPOD correlated inversely with AL in this sample of Chinese subjects with myopia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wald G (1945) Human Vision and the Spectrum. Science 101:653–658

    Article  PubMed  CAS  Google Scholar 

  2. Loane E, Nolan JM, Beatty S (2010) The respective relationships between lipoprotein profile, macular pigment optical density, and serum concentrations of lutein and zeaxanthin. Invest Ophthalmol Vis Sci 51:5897–5905

    Article  PubMed  Google Scholar 

  3. Snodderly DM, Auran JD, Delori FC (1984) The macular pigment. II. Spatial distribution in primate retinas. Invest Ophthalmol Vis Sci 25:674–685

    PubMed  CAS  Google Scholar 

  4. Bone RA, Landrum JT, Friedes LM, Gomez CM, Kilburn MD, Menendez E, Vidal I, Wang W (1997) Distribution of lutein and zeaxanthin stereoisomers in the human retina. Exp Eye Res 64:211–218

    Article  PubMed  CAS  Google Scholar 

  5. Johnson EJ, Neuringer M, Russell RM, Schalch W, Snodderly DM (2005) Nutritional manipulation of primate retinas, III: Effects of lutein or zeaxanthin supplementation on adipose tissue and retina of xanthophyll-free monkeys. Invest Ophthalmol Vis Sci 46:692–702

    Article  PubMed  Google Scholar 

  6. Khachik F, Bernstein PS, Garland DL (1997) Identification of lutein and zeaxanthin oxidation products in human and monkey retinas. Invest Ophthalmol Vis Sci 38:1802–1811

    PubMed  CAS  Google Scholar 

  7. Snodderly DM (1995) Evidence for protection against age-related macular degeneration by carotenoids and antioxidant vitamins. Am J Clin Nutr 62:1448S–1461S

    PubMed  CAS  Google Scholar 

  8. Beatty S, Murray IJ, Henson DB, Carden D, Koh H, Boulton ME (2001) Macular pigment and risk for age-related macular degeneration in subjects from a Northern European population. Invest Ophthalmol Vis Sci 42:439–446

    PubMed  CAS  Google Scholar 

  9. Kilbride PE, Fishman M, Fishman GA, Hutman LP (1986) Foveal cone pigment density difference and reflectance in retinitis pigmentosa. Arch Ophthalmol 104:220–224

    Article  PubMed  CAS  Google Scholar 

  10. Kempen JH, Mitchell P, Lee KE, Tielsch JM, Broman AT, Taylor HR, Ikram MK, Congdon NG, O’Colmain BJ (2004) The prevalence of refractive errors among adults in the United States, Western Europe, and Australia. Arch Ophthalmol 122:495–505

    Article  PubMed  Google Scholar 

  11. Sawada A, Tomidokoro A, Araie M, Iwase A, Yamamoto T (2008) Refractive errors in an elderly Japanese population: the Tajimi study. Ophthalmology 115(363–370):e363

    Article  Google Scholar 

  12. Lim MC, Hoh ST, Foster PJ, Lim TH, Chew SJ, Seah SK, Aung T (2005) Use of optical coherence tomography to assess variations in macular retinal thickness in myopia. Invest Ophthalmol Vis Sci 46:974–978

    Article  PubMed  Google Scholar 

  13. Wakitani Y, Sasoh M, Sugimoto M, Ito Y, Ido M, Uji Y (2003) Macular thickness measurements in healthy subjects with different axial lengths using optical coherence tomography. Retina 23:177–182

    Article  PubMed  Google Scholar 

  14. Zou H, Zhang X, Xu X, Yu S (2006) Quantitative in vivo retinal thickness measurement in chinese healthy subjects with retinal thickness analyzer. Invest Ophthalmol Vis Sci 47:341–347

    Article  PubMed  Google Scholar 

  15. Liew SH, Gilbert CE, Spector TD, Mellerio J, Van Kuijk FJ, Beatty S, Fitzke F, Marshall J, Hammond CJ (2006) Central retinal thickness is positively correlated with macular pigment optical density. Exp Eye Res 82:915–920

    Article  PubMed  CAS  Google Scholar 

  16. Lam DS, Leung KS, Mohamed S, Chan WM, Palanivelu MS, Cheung CY, Li EY, Lai RY, Leung CK (2007) Regional variations in the relationship between macular thickness measurements and myopia. Invest Ophthalmol Vis Sci 48:376–382

    Article  PubMed  Google Scholar 

  17. Song WK, Lee SC, Lee ES, Kim CY, Kim SS (2010) Macular thickness variations with sex, age, and axial length in healthy subjects: a spectral domain-optical coherence tomography study. Invest Ophthalmol Vis Sci 51:3913–3918

    Article  PubMed  Google Scholar 

  18. Duan XR, Liang YB, Friedman DS, Sun LP, Wong TY, Tao QS, Bao L, Wang NL, Wang JJ (2010) Normal macular thickness measurements using optical coherence tomography in healthy eyes of adult Chinese persons: the Handan Eye Study. Ophthalmology 117:1585–1594

    Article  PubMed  Google Scholar 

  19. Aleman TS, Duncan JL, Bieber ML, de Castro E, Marks DA, Gardner LM, Steinberg JD, Cideciyan AV, Maguire MG, Jacobson SG (2001) Macular pigment and lutein supplementation in retinitis pigmentosa and Usher syndrome. Invest Ophthalmol Vis Sci 42:1873–1881

    PubMed  CAS  Google Scholar 

  20. van der Veen RL, Ostendorf S, Hendrikse F, Berendschot TT (2009) Macular pigment optical density relates to foveal thickness. Eur J Ophthalmol 19:836–841

    PubMed  Google Scholar 

  21. Hammond BR Jr, Wooten BR, Smollon B (2005) Assessment of the validity of in vivo methods of measuring human macular pigment optical density. Optom Vis Sci 82:387–404

    Article  PubMed  Google Scholar 

  22. Mellerio J, Ahmadi-Lari S, van Kuijk F, Pauleikhoff D, Bird A, Marshall J (2002) A portable instrument for measuring macular pigment with central fixation. Curr Eye Res 25:37–47

    Article  PubMed  CAS  Google Scholar 

  23. Loane E, Stack J, Beatty S, Nolan JM (2007) Measurement of macular pigment optical density using two different heterochromatic flicker photometers. Curr Eye Res 32:555–564

    Article  PubMed  Google Scholar 

  24. Bone RA, Landrum JT, Cains A (1992) Optical density spectra of the macular pigment in vivo and in vitro. Vision Res 32:105–110

    Article  PubMed  CAS  Google Scholar 

  25. Drexler W, Findl O, Menapace R, Rainer G, Vass C, Hitzenberger CK, Fercher AF (1998) Partial coherence interferometry: a novel approach to biometry in cataract surgery. Am J Ophthalmol 126:524–534

    Article  PubMed  CAS  Google Scholar 

  26. Haigis W, Lege B, Miller N, Schneider B (2000) Comparison of immersion ultrasound biometry and partial coherence interferometry for intraocular lens calculation according to Haigis. Graefes Arch Clin Exp Ophthalmol 238:765–773

    Article  PubMed  CAS  Google Scholar 

  27. Schmitz-Valckenberg S, Holz FG, Bird AC, Spaide RF (2008) Fundus autofluorescence imaging: review and perspectives. Retina 28:385–409

    Article  PubMed  Google Scholar 

  28. Berendschot TT, van Norren D (2004) Objective determination of the macular pigment optical density using fundus reflectance spectroscopy. Arch Biochem Biophys 430:149–155

    Article  PubMed  CAS  Google Scholar 

  29. Berendschot TT, Goldbohm RA, Klopping WA, van de Kraats J, van Norel J, van Norren D (2000) Influence of lutein supplementation on macular pigment, assessed with two objective techniques. Invest Ophthalmol Vis Sci 41:3322–3326

    PubMed  CAS  Google Scholar 

  30. Obana A, Tanito M, Gohto Y, Gellermann W, Okazaki S, Ohira A (2011) Macular pigment changes in pseudophakic eyes quantified with resonance Raman spectroscopy. Ophthalmology 118:1852–1858

    Article  PubMed  Google Scholar 

  31. Hogg RE, Anderson RS, Stevenson MR, Zlatkova MB, Chakravarthy U (2007) In vivo macular pigment measurements: a comparison of resonance Raman spectroscopy and heterochromatic flicker photometry. Br J Ophthalmol 91:485–490

    Article  PubMed  CAS  Google Scholar 

  32. Moreland JD (2004) Macular pigment assessment by motion photometry. Arch Biochem Biophys 430:143–148

    Article  PubMed  CAS  Google Scholar 

  33. Stone RA, Quinn GE, Francis EL, Ying GS, Flitcroft DI, Parekh P, Brown J, Orlow J, Schmid G (2004) Diurnal axial length fluctuations in human eyes. Invest Ophthalmol Vis Sci 45:63–70

    Article  PubMed  Google Scholar 

  34. Tang CY, Yip HS, Poon MY, Yau WL, Yap MK (2004) Macular pigment optical density in young Chinese adults. Ophthalmic Physiol Opt 24:586–593

    Article  PubMed  Google Scholar 

  35. Lam RF, Rao SK, Fan DS, Lau FT, Lam DS (2005) Macular pigment optical density in a Chinese sample. Curr Eye Res 30:799–805

    PubMed  Google Scholar 

  36. van der Veen RL, Berendschot TT, Hendrikse F, Carden D, Makridaki M, Murray IJ (2009) A new desktop instrument for measuring macular pigment optical density based on a novel technique for setting flicker thresholds. Ophthalmic Physiol Opt 29:127–137

    Article  PubMed  Google Scholar 

  37. Canovas R, Lima VC, Garcia P, Morini C, Prata TS, Rosen RB (2010) Comparison between macular pigment optical density measurements using two-wavelength autofluorescence and heterochromatic flicker photometry techniques. Invest Ophthalmol Vis Sci 51:3152–3156

    Article  PubMed  Google Scholar 

  38. Raman R, Rajan R, Biswas S, Vaitheeswaran K, Sharma T (2011) Macular pigment optical density in a South Indian population. Invest Ophthalmol Vis Sci 52:7910–7916

    Article  PubMed  Google Scholar 

  39. Wolf-Schnurrbusch UE, Roosli N, Weyermann E, Heldner MR, Hohne K, Wolf S (2007) Ethnic differences in macular pigment density and distribution. Invest Ophthalmol Vis Sci 48:3783–3787

    Article  PubMed  Google Scholar 

  40. Nolan JM, Kenny R, O’Regan C, Cronin H, Loughman J, Connolly EE, Kearney P, Loane E, Beatty S (2010) Macular pigment optical density in an ageing Irish population: The Irish Longitudinal Study on Ageing. Ophthalmic Res 44:131–139

    Article  PubMed  Google Scholar 

  41. Kirby ML, Beatty S, Loane E, Akkali MC, Connolly EE, Stack J, Nolan JM (2010) A central dip in the macular pigment spatial profile is associated with age and smoking. Invest Ophthalmol Vis Sci 51:6722–6728

    Article  PubMed  Google Scholar 

  42. Ciulla TA, Curran-Celantano J, Cooper DA, Hammond BR Jr, Danis RP, Pratt LM, Riccardi KA, Filloon TG (2001) Macular pigment optical density in a midwestern sample. Ophthalmology 108:730–737

    Article  PubMed  CAS  Google Scholar 

  43. Ciulla TA, Hammond BR Jr (2004) Macular pigment density and aging, assessed in the normal elderly and those with cataracts and age-related macular degeneration. Am J Ophthalmol 138:582–587

    Article  PubMed  Google Scholar 

  44. Sasamoto Y, Gomi F, Sawa M, Tsujikawa M, Nishida K (2011) Effect of 1-year lutein supplementation on macular pigment optical density and visual function. Graefes Arch Clin Exp Ophthalmol 249:1847–54

    Article  PubMed  CAS  Google Scholar 

  45. Hammond BR Jr, Ciulla TA, Snodderly DM (2002) Macular pigment density is reduced in obese subjects. Invest Ophthalmol Vis Sci 43:47–50

    PubMed  Google Scholar 

  46. Sasamoto Y, Gomi F, Sawa M, Tsujikawa M, Hamasaki T (2010) Macular pigment optical density in central serous chorioretinopathy. Invest Ophthalmol Vis Sci 51:5219–5225

    Article  PubMed  Google Scholar 

  47. Tsika C, Tsilimbaris MK, Makridaki M, Kontadakis G, Plainis S, Moschandreas J (2011) Assessment of macular pigment optical density (MPOD) in patients with unilateral wet age-related macular degeneration (AMD). Acta Ophthalmol 89:e573–e578

    Article  PubMed  Google Scholar 

  48. LaRowe TL, Mares JA, Snodderly DM, Klein ML, Wooten BR, Chappell R (2008) Macular pigment density and age-related maculopathy in the Carotenoids in Age-Related Eye Disease Study. An ancillary study of the women's health initiative. Ophthalmology 115(876–883):e871

    Google Scholar 

  49. Stringham JM, Hammond BR, Nolan JM, Wooten BR, Mammen A, Smollon W, Snodderly DM (2008) The utility of using customized heterochromatic flicker photometry (cHFP) to measure macular pigment in patients with age-related macular degeneration. Exp Eye Res 87:445–453

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Opening Project of Shanghai Key Laboratory of Fundus Diseases (07Z22911)

Competing Interests

None declared.

Conflict of Interest

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xingwei Wu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tong, N., Zhang, W., Zhang, Z. et al. Inverse relationship between macular pigment optical density and axial length in Chinese subjects with myopia. Graefes Arch Clin Exp Ophthalmol 251, 1495–1500 (2013). https://doi.org/10.1007/s00417-012-2225-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00417-012-2225-z

Keywords

Navigation