Skip to main content

Advertisement

Log in

Biologic meshes and synthetic meshes in cancer patients: a double-edged sword: differences in production of IL-6 and IL-12 caused by acellular dermal matrices in human immune cells

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

In 2005, Breuing et al. first described the use of acellular dermal matrices (ADMs) in breast cancer patients. ADMs are assumed to be safe to use in an oncologic setting, but data from controlled studies are still needed. Here, we investigate the effects of ADMs on the production of interleukin (IL)-6 and IL-12, key regulators of immune suppression and activation.

Methods

Strattice (ST), CollaMend (CM), and Biodesign (BD) biologic meshes and TiLoop, a synthetic mesh (TL), were used in this study. We isolated myeloid dendritic cells (MDCs), untouched plasmacytoid dendritic cells (pDCs), naïve B cells, and CD8+ T cells and co-cultured these cells with either the biologic meshes or TL. As positive controls, we used CpG ODN 2216 or lipopolysaccharide (LPS). The cytokine concentrations of IL-12p70 and IL-6 were determined after 7 days using sandwich ELISA sets.

Results

There were highly significant differences between the ADMs and TL in terms of their ability to stimulate immunologic responses. IL-6 expression was significantly increased in B cells (p = 0.0006131) and T cells (p = 0.00418) when comparing TL and ADMs. We also identified significant differences in IL-12 production by B cells (p = 0.0166) and T cells (p = 0.003636) when comparing TL and ADMs.

Conclusions

Despite the assumed lack of an immunological response to ADMs, in our experimental study, human immune cells reacted with significantly different cytokine profiles. These findings may have implications for the potential activation or suppression of effector cells in cancer patients and could explain some of the post clinical post surgical signs of ADMS like skin rush and seroma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Badylak SF, Tullius R, Kokini K, Shelbourne KD, Klootwyk T, Voytik SL, Kraine MR, Simmons C (1995) The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J Biomed Mater Res 29:977–985. https://doi.org/10.1002/jbm.820290809

    Article  CAS  PubMed  Google Scholar 

  2. Kropp BP, Eppley BL, Prevel CD, Rippy MK, Harruff RC, Badylak SF, Adams MC, Rink RC, Keating MA (1995) Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology 46:396–400. https://doi.org/10.1016/S0090-4295(99)80227-1

    Article  CAS  PubMed  Google Scholar 

  3. Bayrak A, Tyralla M, Ladhoff J, Schleicher M, Stock UA, Volk HD, Seifert M (2010) Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials 31:3793–3803. https://doi.org/10.1016/j.biomaterials.2010.01.120

    Article  CAS  PubMed  Google Scholar 

  4. Orenstein SB, Qiao Y, Kaur M et al (2010) Human monocyte activation by biologic and biodegradable meshes in vitro. Surg Endosc 24:805–811

    Article  PubMed  Google Scholar 

  5. Kobayashi M, Fitz L, Ryan M, Hewick RM, Clark SC, Chan S, Loudon R, Sherman F, Perussia B, Trinchieri G (1989) Identification and purification of natural killer cell stimulatory factor (NKSF), a cytokine with multiple biologic effects on human lymphocytes. J Exp Med 170:827–845

    Article  CAS  PubMed  Google Scholar 

  6. Stern AS, Podlaski FJ, Hulmes JD, Pan YC, Quinn PM, Wolitzky AG, Familletti PC, Stremlo DL, Truitt T, Chizzonite R et al (1990) Purification to homogeneity and partial characterization of cytotoxic lymphocyte maturation factor from human B-lymphoblastoid cells. Proc Natl Acad Sci USA 87:6808–6812

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Faggioli F, Soldati S, Scanziani E, Cato EM, Adorni F, Vezzoni P, Noonan DM, Sacco MG (2008) Effects of IL-12 gene therapy on spontaneous transgenic and transplanted breast tumors. Breast Cancer Res Treat 110:223–226. https://doi.org/10.1007/s10549-007-9713-6

    Article  CAS  PubMed  Google Scholar 

  8. Lenzi R, Rosenblum M, Verschraegen C, Kudelka AP, Kavanagh JJ, Hicks ME, Lang EA, Nash MA, Levy LB, Garcia ME, Platsoucas CD, Abbruzzese JL, Freedman RS (2002) Phase I study of intraperitoneal recombinant human interleukin 12 in patients with Mullerian carcinoma, gastrointestinal primary malignancies, and mesothelioma. Clin Cancer Res 8:3686–3695

    CAS  PubMed  Google Scholar 

  9. Portielje JE, Lamers CH, Kruit WH, Sparreboom A, Bolhuis RL, Stoter G, Huber C, Gratama JW (2003) Repeated administrations of interleukin (IL)-12 are associated with persistently elevated plasma levels of IL-10 and declining IFN-gamma, tumor necrosis factor-alpha, IL-6, and IL-8 responses. Clin Cancer Res 9:76–83

    CAS  PubMed  Google Scholar 

  10. Haicheur N, Escudier B, Dorval T, Negrier S, De Mulder PH, Dupuy JM, Novick D, Guillot T, Wolf S, Pouillart P, Fridman WH, Tartour E (2000) Cytokines and soluble cytokine receptor induction after IL-12 administration in cancer patients. Clin Exp Immunol 119:28–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Broderick L, Brooks SP, Takita H, Baer AN, Bernstein JM, Bankert RB (2006) IL-12 reverses anergy to T cell receptor triggering in human lung tumor-associated memory T cells. Clin Immunol 118:159–169. https://doi.org/10.1016/j.clim.2005.09.008

    Article  CAS  PubMed  Google Scholar 

  12. Broderick L, Yokota SJ, Reineke J, Mathiowitz E, Stewart CC, Barcos M, Kelleher RJ Jr, Bankert RB (2005) Human CD4+ effector memory T cells persisting in the microenvironment of lung cancer xenografts are activated by local delivery of IL-12 to proliferate, produce IFN-gamma, and eradicate tumor cells. J Immunol 174:898–906

    Article  CAS  PubMed  Google Scholar 

  13. Kilinc MO, Aulakh KS, Nair RE, Jones SA, Alard P, Kosiewicz MM, Egilmez NK (2006) Reversing tumor immune suppression with intratumoral IL-12: activation of tumor-associated T effector/memory cells, induction of T suppressor apoptosis, and infiltration of CD8+ T effectors. J Immunol 177:6962–6973

    Article  CAS  PubMed  Google Scholar 

  14. Leonard JP, Sherman ML, Fisher GL, Buchanan LJ, Larsen G, Atkins MB, Sosman JA, Dutcher JP, Vogelzang NJ, Ryan JL (1997) Effects of single-dose interleukin-12 exposure on interleukin-12-associated toxicity and interferon-gamma production. Blood 90:2541–2548

    CAS  PubMed  Google Scholar 

  15. Daud AI, DeConti RC, Andrews S, Urbas P, Riker AI, Sondak VK, Munster PN, Sullivan DM, Ugen KE, Messina JL, Heller R (2008) Phase I trial of interleukin-12 plasmid electroporation in patients with metastatic melanoma. J Clin Oncol 26:5896–5903. https://doi.org/10.1200/JCO.2007.15.6794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Mahvi DM, Henry MB, Albertini MR, Weber S, Meredith K, Schalch H, Rakhmilevich A, Hank J, Sondel P (2007) Intratumoral injection of IL-12 plasmid DNA-results of a phase I/IB clinical trial. Cancer Gene Ther 14:717–723. https://doi.org/10.1038/sj.cgt.7701064

    Article  CAS  PubMed  Google Scholar 

  17. Hirano T, Yasukawa K, Harada H, Taga T, Watanabe Y, Matsuda T, Kashiwamura S, Nakajima K, Koyama K, Iwamatsu A et al (1986) Complementary DNA for a novel human interleukin (BSF-2) that induces B lymphocytes to produce immunoglobulin. Nature 324:73–76. https://doi.org/10.1038/324073a0

    Article  CAS  PubMed  Google Scholar 

  18. Jamroziak K, Smolewski P, Cebula B, Szmigielska-Kaplon A, Darzynkiewicz Z, Robak T (2004) Relation of P-glycoprotein expression with spontaneous in vitro apoptosis in B-cell chronic lymphocytic leukemia. Neoplasma 51:181–187

    CAS  PubMed  Google Scholar 

  19. Conze D, Weiss L, Regen PS, Bhushan A, Weaver D, Johnson P, Rincon M (2001) Autocrine production of interleukin 6 causes multidrug resistance in breast cancer cells. Cancer Res 61:8851–8858

    CAS  PubMed  Google Scholar 

  20. Pu YS, Hour TC, Chuang SE, Cheng AL, Lai MK, Kuo ML (2004) Interleukin-6 is responsible for drug resistance and anti-apoptotic effects in prostatic cancer cells. Prostate 60:120–129. https://doi.org/10.1002/pros.20057

    Article  CAS  PubMed  Google Scholar 

  21. George DJ, Halabi S, Shepard TF, Sanford B, Vogelzang NJ, Small EJ, Kantoff PW (2005) The prognostic significance of plasma interleukin-6 levels in patients with metastatic hormone-refractory prostate cancer: results from cancer and leukemia group B 9480. Clin Cancer Res 11:1815–1820. https://doi.org/10.1158/1078-0432.CCR-04-1560

    Article  CAS  PubMed  Google Scholar 

  22. Alexandrakis MG, Passam FH, Kyriakou DS, Dambaki C, Katrinakis G, Tsirakis G, Konsolas J, Stathopoulos EN (2004) Expression of the proliferation-associated nuclear protein MIB-1 and its relationship with microvascular density in bone marrow biopsies of patients with myelodysplastic syndromes. J Mol Histol 35:857–863. https://doi.org/10.1007/s10735-004-2341-0

    Article  CAS  PubMed  Google Scholar 

  23. Breuing KH, Warren SM (2005) Immediate bilateral breast reconstruction with implants and inferolateral AlloDerm slings. Ann Plast Surg 55(3):232–239

    Article  CAS  PubMed  Google Scholar 

  24. Zenn M, Venturi M, Pittman T, Spear S, Gurtner G, Robb G, Mesbahi A, Dayan J (2017) Optimizing outcomes of postmastectomy breast reconstruction with acellular dermal matrix: a review of recent clinical data. Eplasty 17:e18

    PubMed  PubMed Central  Google Scholar 

  25. Wong AK, Schonmeyr B, Singh P, Carlson DL, Li S, Mehrara BJ (2008) Histologic analysis of angiogenesis and lymphangiogenesis in acellular human dermis. Plast Reconstr Surg 121:1144–1152. https://doi.org/10.1097/01.prs.0000302505.43942.07

    Article  CAS  PubMed  Google Scholar 

  26. Dikmans RE, El Morabit F, Ottenhof MJ, Tuinder SM, Twisk JW, Moues C, Bouman MB, Mullender MG (2016) Single-stage breast reconstruction using Strattice: a retrospective study. J Plast Reconstr Aesthet Surg 69:227–233. https://doi.org/10.1016/j.bjps.2015.11.008

    Article  CAS  PubMed  Google Scholar 

  27. Dieterich M, Stubert J, Gerber B, Reimer T, Richter DU (2015) Biocompatibility, cell growth and clinical relevance of synthetic meshes and biological matrixes for internal support in implant-based breast reconstruction. Arch Gynecol Obstet 291:1371–1379. https://doi.org/10.1007/s00404-014-3578-9

    Article  CAS  PubMed  Google Scholar 

  28. Dieterich M, Paepke S, Zwiefel K, Dieterich H, Blohmer J, Faridi A, Klein E, Gerber B, Nestle-Kraemling C (2013) Implant-based breast reconstruction using a titanium-coated polypropylene mesh (TiLOOP Bra): a multicenter study of 231 cases. Plast Reconstr Surg 132:8e–19e. https://doi.org/10.1097/PRS.0b013e318290f8a0

    Article  CAS  PubMed  Google Scholar 

  29. Yoshida H, Hashizume M, Suzuki M, Mihara M (2010) Anti-IL-6 receptor antibody suppressed T cell activation by inhibiting IL-2 production and inducing regulatory T cells. Eur J Pharmacol 634:178–183. https://doi.org/10.1016/j.ejphar.2010.02.026

    Article  CAS  PubMed  Google Scholar 

  30. Hunter CA (2005) New IL-12-family members: IL-23 and IL-27, cytokines with divergent functions. Nat Rev Immunol 5:521–531. https://doi.org/10.1038/nri1648

    Article  CAS  PubMed  Google Scholar 

  31. Ansell SM, Witzig TE, Kurtin PJ, Sloan JA, Jelinek DF, Howell KG, Markovic SN, Habermann TM, Klee GG, Atherton PJ, Erlichman C (2002) Phase 1 study of interleukin-12 in combination with rituximab in patients with B-cell non-Hodgkin lymphoma. Blood 99:67–74

    Article  CAS  PubMed  Google Scholar 

  32. Younes A, Pro B, Robertson MJ, Flinn IW, Romaguera JE, Hagemeister F, Dang NH, Fiumara P, Loyer EM, Cabanillas FF, McLaughlin PW, Rodriguez MA, Samaniego F (2004) Phase II clinical trial of interleukin-12 in patients with relapsed and refractory non-Hodgkin’s lymphoma and Hodgkin’s disease. Clin Cancer Res 10:5432–5438. https://doi.org/10.1158/1078-0432.CCR-04-0540

    Article  CAS  PubMed  Google Scholar 

  33. Castellani ML, Anogeianaki A, Felaco P, Toniato E, De Lutiis MA, Shaik B, Fulcheri M, Vecchiet J, Tete S, Salini V, Theoharides TC, Caraffa A, Antinolfi P, Frydas I, Conti P, Cuccurullo C, Ciampoli C, Cerulli G, Kempuraj D (2010) IL-35, an anti-inflammatory cytokine which expands CD4+ CD25+ Treg cells. J Biol Regul Homeost Agents 24:131–135

    PubMed  Google Scholar 

Download references

Acknowledgements

This study was presented in part in poster format at the 2013 Annual Meeting of the American Society of Clinical Oncology, May 31–June 4, Chicago, IL.

Funding

The study was supported by a Grant from the Klinik für Frauenheilkunde, Ludwig-Maximilians-Universität München, München, Deutschland.

Author information

Authors and Affiliations

Authors

Contributions

MK: conceptualization, data curation, funding acquisition, investigation, project administration, writing original draft, and supervision. SE: investigation, methodology. JK: writing, review, and editing. VK: methodology. PD: investigation. BR: funding acquisition, methodology. JB: writing and review. DM: investigation and conceptualization. DD: conceptualization and supervision.

Corresponding author

Correspondence to Maria Margarete Karsten.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Ethical approval

The study was approved by the ethics committee of the Ludwig-Maximilians-Universität München.

Informed consent

All study participants gave written informed consent for this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karsten, M.M., Enders, S., Knabl, J. et al. Biologic meshes and synthetic meshes in cancer patients: a double-edged sword: differences in production of IL-6 and IL-12 caused by acellular dermal matrices in human immune cells. Arch Gynecol Obstet 297, 1265–1270 (2018). https://doi.org/10.1007/s00404-018-4710-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-018-4710-z

Keywords

Navigation