Skip to main content

Advertisement

Log in

Clinical significance of miRNA-21, -103, -129, -150 in serous ovarian cancer

  • Gynecologic Oncology
  • Published:
Archives of Gynecology and Obstetrics Aims and scope Submit manuscript

Abstract

Purpose

We aimed to compare expression levels of miRNA-21, -103, -129, -150 in primary tumour tissues and its omental metastases from patients operated for advanced ovarian serous cancer. Expression levels of selected miRNAs were correlated with clinicopathological features, including chemosensitivity and survival.

Methods

We performed total RNA extraction from archival formalin-fixed paraffin-embedded tissue samples of primary serous ovarian cancer and omental metastases. The study included 48 patients with advanced ovarian cancer. The reference group consisted of 48 normal ovarian tissue samples. We performed cDNA synthesis, real time polymerase chain reaction and assessed relative expression of selected miRNAs.

Results

Samples derived from serous ovarian cancer were characterized by higher expression levels of miRNA-150 in comparison to omental metastases (p = 0.045). Furthermore, we observed that shorter progression free-survival was associated with lower levels of miRNA-150 in metastatic tissues. We did not find similar relationships for other miRNAs.

Conclusions

MiRNA-150 may potentially serve as a prognostic factor in advanced ovarian cancer. However, further studies are required to clearly confirm such hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294(5543):853–858

    Article  CAS  PubMed  Google Scholar 

  2. Bartel DP (2004) Micrornas: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  3. Kang HY (2013) MicroRNA-21 regulates stemness in cancer cells. Stem Cell Res Ther 4:110

    Article  PubMed  PubMed Central  Google Scholar 

  4. Conev NV, Donev IS, Konsoulova-Kirova AA, Chervenkov TG, Kashlov JK, Ivanov KD (2015) Serum expression levels of miR-17, miR-21, and miR-92 as potential biomarkers for recurrence after adjuvant chemotherapy in colon cancer patients. Biosci Trends 9:393–401. https://doi.org/10.5582/bst.2015.01170

    Article  PubMed  Google Scholar 

  5. Chen H, Liu H, Zou H, Chen R, Dou Y, Sheng S et al (2016) Evaluation of plasma miR-21 and miR-152 as diagnostic biomarkers for common types of human cancers. J Cancer 7:490–499. https://doi.org/10.7150/jca.12351

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kuang Y, Nie YJ (2016) Exploration of the regulatory effect of miR-21 on breast cancer cell line proliferation and invasion as well as the downstream target genes. Asian Pac J Trop Med 9:470–473. https://doi.org/10.1016/j.apjtm.2016.03.025

    Article  CAS  PubMed  Google Scholar 

  7. Wei X, Wang W, Wang L, Zhang Y, Zhang X, Chen M et al (2016) MicroRNA-21 induces 5-fluorouracil resistance in human pancreatic cancer cells by regulating PTEN and PDCD4. Cancer Med 5:693–702. https://doi.org/10.1002/cam4.626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chen S, Sun KX, Liu BL, Zong ZH, Zhao Y (2016) The role of glycogen synthase kinase-3β (GSK-3β) in endometrial carcinoma: a carcinogenesis, progression, prognosis, and target therapy marker. Oncotarget 7:27538–27551. https://doi.org/10.18632/oncotarget.8485

    PubMed  PubMed Central  Google Scholar 

  9. Yang Y, Huang JQ, Zhang X, Shen LF (2015) MiR-129-2 functions as a tumor suppressor in glioma cells by targeting HMGB1 and is down-regulated by DNA methylation. Mol Cell Biochem 404:229–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Li M, Tian L, Wang L, Yao H, Zhang J, Lu J, Sun Y et al (2013) Down-regulation of miR-129-5p inhibits growth and induces apoptosis in laryngeal squamous cell carcinoma by targeting APC. PLoS One 8(10):e77829. https://doi.org/10.1371/journal.pone.0077829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Xu S, Yi XM, Zhou WQ, Cheng W, Ge JP, Zhang ZY (2015) Downregulation of miR-129 in peripheral blood mononuclear cells is a diagnostic and prognostic biomarker in prostate cancer. Int J Clin Exp Pathol 8:14335–14344

    PubMed  PubMed Central  Google Scholar 

  12. Yu D, Zhou H, Xun Q, Xu X, Ling J, Hu Y (2012) microRNA-103 regulates the growth and invasion of endometrial cancer cells through the downregulation of tissue inhibitor of metalloproteinase 3. Oncol Lett. 3:1221–1226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gottardo F, Liu CG, Ferracin M, Calin GA, Fassan M, Bassi P et al (2007) Micro-RNA profiling in kidney and bladder cancers. Urol Oncol 25:387–392

    Article  CAS  PubMed  Google Scholar 

  14. Geng L, Sun B, Gao B, Wang Z, Quan C, Wei F, Fang XD (2014) MicroRNA-103 promotes colorectal cancer by targeting tumor suppressor DICER and PTEN. Int J Mol Sci 15:8458–8472. https://doi.org/10.3390/ijms15058458

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen HY, Lin YM, Chung HC, Lang YD, Lin CJ, Huang J et al (2012) miR-103/107 promote metastasis of colorectal cancer by targeting the metastasis suppressors DAPK and KLF4. Cancer Res 72:3631–3641. https://doi.org/10.1158/0008-5472.CAN-12-0667

    Article  CAS  PubMed  Google Scholar 

  16. Srivastava SK, Bhardwaj A, Singh S, Arora S, Wang B, Grizzle WE, Singh AP (2011) MicroRNA-150 directly targets MUC4 and suppresses growth and malignant behavior of pancreatic cancer cells. Carcinogenesis 32:1832–1839. https://doi.org/10.1093/carcin/bgr223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Wu Q, Jin H, Yang Z, Luo G, Lu Y, Li K et al (2010) MiR-150 promotes gastric cancer proliferation by negatively regulating the pro-apoptotic gene EGR2. Biochem Biophys Res Commun 392:340–345. https://doi.org/10.1016/j.bbrc.2009.12.182

    Article  CAS  PubMed  Google Scholar 

  18. Zhang N, Wei X, Xu L (2013) miR-150 promotes the proliferation of lung cancer cells by targeting P53. FEBS Lett 587:2346–2351. https://doi.org/10.1016/j.febslet.2013.05.059

    Article  CAS  PubMed  Google Scholar 

  19. Polytarchou C, Iliopoulos D, Hatziapostolou M, Kottakis F, Maroulakou I, Struhl K, Tsichlis PN (2011) Akt2 regulates all Akt isoforms and promotes resistance to hypoxia through induction of miR-21 upon oxygen deprivation. Cancer Res 71:4720–4731. https://doi.org/10.1158/0008-5472.CAN-11-0365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC et al (1992) AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 89:9267–9271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Echevarría-Vargas IM, Valiyeva F, Vivas-Mejía PE (2014) Upregulation of miR-21 in cisplatin resistant ovarian cancer via JNK-1/c-Jun pathway. PLoS One 9(5):e97094. https://doi.org/10.1371/journal.pone.0097094

    Article  PubMed  PubMed Central  Google Scholar 

  22. Xie Z, Cao L, Zhang J (2013) miR-21 modulates paclitaxel sensitivity and hypoxia-inducible factor-1α expression in human ovarian cancer cells. Oncol Lett 6:795–800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chan JK, Blansit K, Kiet T, Sherman A, Wong G, Earle C, Bourguignon LY (2014) The inhibition of miR-21 promotes apoptosis and chemosensitivity in ovarian cancer. Gynecol Oncol 132:739–744. https://doi.org/10.1016/j.ygyno.2014.01.034

    Article  CAS  PubMed  Google Scholar 

  24. Chen Y, Chen Q, Liu Q, Gao F (2016) Human epididymis protein 4 expression positively correlated with miR-21 and served as a prognostic indicator in ovarian cancer. Tumour Biol 37:8359–8365. https://doi.org/10.1007/s13277-015-4672-8

    Article  CAS  PubMed  Google Scholar 

  25. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P et al (2007) MicroRNA signatures in human ovarian cancer. Cancer Res 67:8699–8707

    Article  CAS  PubMed  Google Scholar 

  26. Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH et al (2008) MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 14:2690–2695

    Article  CAS  PubMed  Google Scholar 

  27. Dahiya N, Sherman-Baust CA, Wang TL, Davidson B, Shih IeM, Zhang Y, Wood W 3rd, Becker KG, Morin PJ (2008) MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One 3(6):e2436. https://doi.org/10.1371/journal.pone.0002436

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ho ES, Lai CR, Hsieh YT, Chen JT, Lin AJ, Hung MH, Liu FS (2001) p53 mutation is infrequent in clear cell carcinoma of the ovary. Gynecol Oncol 80:189–193

    Article  CAS  PubMed  Google Scholar 

  29. Wiegand et al (2010) ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 363:1532–1543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Bell D, Berchuck A, Birrer M, Chien J, Cramer D, Dao F et al (2011) Cancer genome atlas research network. Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615. https://doi.org/10.1038/nature10166

    Article  CAS  Google Scholar 

  31. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T et al (2015) A novel role for microRNA-129-5p in inhibiting ovarian cancer cell proliferation and survival via direct suppression of transcriptional co-activators YAP and TAZ. Oncotarget 6(11):8676–8686

    Google Scholar 

  32. Kan CW, Hahn MA, Gard GB, Maidens J, Huh JY, Marsh DJ, Howell VM (2012) Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer. BMC Cancer 12:627. https://doi.org/10.1186/1471-2407-12-627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Vang S, Wu HT, Fischer A, Miller DH, MacLaughlan S, Douglass E et al (2013) Identification of ovarian cancer metastatic miRNAs. PLoS One 8(3):e58226. https://doi.org/10.1371/journal.pone.0058226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Jin M, Yang Z, Ye W, Xu H, Hua X (2014) MicroRNA-150 predicts a favorable prognosis in patients with epithelial ovarian cancer, and inhibits cell invasion and metastasis by suppressing transcriptional repressor ZEB1. PLoS One 9(8):e103965. https://doi.org/10.1371/journal.pone.0103965

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wang DT, Ma ZL, Li YL, Wang YQ, Zhao BT, Wei JL et al (2013) miR-150, p53 protein and relevant miRNAs consist of a regulatory network in NSCLC tumorigenesis. Oncol Rep 30(1):492–498. https://doi.org/10.3892/or.2013.2453

    Article  PubMed  Google Scholar 

Download references

Funding

The study was financed from Polish Mother’s Memorial Hospital Research Institute internal Grant no. 2014/VII/25-GW.

Author information

Authors and Affiliations

Authors

Contributions

All authors read and approved the final manuscript. MW—corresponding author who designed the study, wrote the paper and analysed data. EZ—selection of patients and tissue samples, data analysis. JD—clinical data collection, analysis of data. MD—histopathological assessment of samples. BS—PCR quantification. MN—data collection and interpretation. JM—data collection. DO—data collection. JRW—designed the study, supervised and edited the manuscript, final approval of the manuscript.

Corresponding author

Correspondence to Miłosz Wilczyński.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was obtained from Polish Mother’s Memorial Hospital Research Institute Ethics Committee.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Human/animal rights statement

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wilczyński, M., Żytko, E., Danielska, J. et al. Clinical significance of miRNA-21, -103, -129, -150 in serous ovarian cancer. Arch Gynecol Obstet 297, 741–748 (2018). https://doi.org/10.1007/s00404-018-4660-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00404-018-4660-5

Keywords

Navigation