Skip to main content

Advertisement

Log in

Notch activation enhances lineage commitment and protective signaling in cardiac progenitor cells

  • Original Contribution
  • Published:
Basic Research in Cardiology Aims and scope Submit manuscript

Abstract

Phase I clinical trials applying autologous progenitor cells to treat heart failure have yielded promising results; however, improvement in function is modest, indicating a need to enhance cardiac stem cell reparative capacity. Notch signaling plays a crucial role in cardiac development, guiding cell fate decisions that underlie myocyte and vessel differentiation. The Notch pathway is retained in the adult cardiac stem cell niche, where level and duration of Notch signal influence proliferation and differentiation of cardiac progenitors. In this study, Notch signaling promotes growth, survival and differentiation of cardiac progenitor cells into smooth muscle lineages in vitro. Cardiac progenitor cells expressing tamoxifen-regulated intracellular Notch1 (CPCeK) are significantly larger and proliferate more slowly than control cells, exhibit elevated mTORC1 and Akt signaling, and are resistant to oxidative stress. Vascular smooth muscle and cardiomyocyte markers increase in CPCeK and are augmented further upon ligand-mediated induction of Notch signal. Paracrine signals indicative of growth, survival and differentiation increase with Notch activity, while markers of senescence are decreased. Adoptive transfer of CPCeK into infarcted mouse myocardium enhances preservation of cardiac function and reduces infarct size relative to hearts receiving control cells. Greater capillary density and proportion of vascular smooth muscle tissue in CPCeK-treated hearts indicate improved vascularization. Finally, we report a previously undescribed signaling mechanism whereby Notch activation stimulates CPC growth, survival and differentiation via mTORC1 and paracrine factor expression. Taken together, these findings suggest that regulated Notch activation potentiates the reparative capacity of CPCs in the treatment of cardiac disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Androutsellis-Theotokis A, Leker RR, Soldner F, Hoeppner DJ, Ravin R, Poser SW, Rueger MA, Bae SK, Kittappa R, McKay RD (2006) Notch signalling regulates stem cell numbers in vitro and in vivo. Nature 442:823–826. doi:10.1038/nature04940

    Article  CAS  PubMed  Google Scholar 

  2. Avolio E, Meloni M, Spencer HL, Riu F, Katare R, Mangialardi G, Oikawa A, Rodriguez-Arabaolaza I, Dang Z, Mitchell K, Reni C, Alvino VV, Rowlinson JM, Livi U, Cesselli D, Angelini G, Emanueli C, Beltrami AP, Madeddu PR (2015) Combined intramyocardial delivery of human pericytes and cardiac stem cells additively improves the healing of mouse infarcted hearts through stimulation of vascular and muscular repair. Circ Res. doi:10.1161/CIRCRESAHA.115.306146

    PubMed  Google Scholar 

  3. Bolli R, Chugh AR, D’Amario D, Loughran JH, Stoddard MF, Ikram S, Beache GM, Wagner SG, Leri A, Hosoda T, Sanada F, Elmore JB, Goichberg P, Cappetta D, Solankhi NK, Fahsah I, Rokosh DG, Slaughter MS, Kajstura J, Anversa P (2011) Cardiac stem cells in patients with ischaemic cardiomyopathy (SCIPIO): initial results of a randomised phase 1 trial. Lancet 378:1847–1857. doi:10.1016/S0140-6736(11)61590-0

    Article  PubMed Central  PubMed  Google Scholar 

  4. Boni A, Urbanek K, Nascimbene A, Hosoda T, Zheng H, Delucchi F, Amano K, Gonzalez A, Vitale S, Ojaimi C, Rizzi R, Bolli R, Yutzey KE, Rota M, Kajstura J, Anversa P, Leri A (2008) Notch1 regulates the fate of cardiac progenitor cells. Proc Natl Acad Sci USA 105:15529–15534. doi:10.1073/pnas.0808357105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Buas MF, Kabak S, Kadesch T (2010) The Notch effector Hey1 associates with myogenic target genes to repress myogenesis. J Biol Chem 285:1249–1258. doi:10.1074/jbc.M109.046441

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Campa VM, Gutierrez-Lanza R, Cerignoli F, Diaz-Trelles R, Nelson B, Tsuji T, Barcova M, Jiang W, Mercola M (2008) Notch activates cell cycle reentry and progression in quiescent cardiomyocytes. J Cell Biol 183:129–141. doi:10.1083/jcb.200806104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Chen L, Ashraf M, Wang Y, Zhou M, Zhang J, Qin G, Rubinstein J, Weintraub NL, Tang Y (2012) The role of Notch 1 activation in cardiosphere derived cell differentiation. Stem Cells Dev 21:2122–2129. doi:10.1089/scd.2011.0463

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Chen VC, Stull R, Joo D, Cheng X, Keller G (2008) Notch signaling respecifies the hemangioblast to a cardiac fate. Nat Biotechnol 26:1169–1178. doi:10.1038/nbt.1497

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Chugh AR, Beache GM, Loughran JH, Mewton N, Elmore JB, Kajstura J, Pappas P, Tatooles A, Stoddard MF, Lima JA, Slaughter MS, Anversa P, Bolli R (2012) Administration of cardiac stem cells in patients with ischemic cardiomyopathy: the SCIPIO trial: surgical aspects and interim analysis of myocardial function and viability by magnetic resonance. Circulation 126:S54–S64. doi:10.1161/CIRCULATIONAHA.112.092627

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Croquelois A, Domenighetti AA, Nemir M, Lepore M, Rosenblatt-Velin N, Radtke F, Pedrazzini T (2008) Control of the adaptive response of the heart to stress via the Notch1 receptor pathway. J Exp Med 205:3173–3185. doi:10.1084/jem.20081427

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. D’Amario D, Leone AM, Iaconelli A, Luciani N, Gaudino M, Kannappan R, Manchi M, Severino A, Shin SH, Graziani F, Biasillo G, Macchione A, Smaldone C, De Maria GL, Cellini C, Siracusano A, Ottaviani L, Massetti M, Goichberg P, Leri A, Anversa P, Crea F (2014) Growth properties of cardiac stem cells are a novel biomarker of patients’ outcome after coronary bypass surgery. Circulation 129:157–172. doi:10.1161/CIRCULATIONAHA.113.006591

    Article  PubMed Central  PubMed  Google Scholar 

  12. de la Pompa JL, Epstein JA (2012) Coordinating tissue interactions: Notch signaling in cardiac development and disease. Dev Cell 22:244–254. doi:10.1016/j.devcel.2012.01.014

    Article  PubMed Central  PubMed  Google Scholar 

  13. Fischer KM, Cottage CT, Wu W, Din S, Gude NA, Avitabile D, Quijada P, Collins BL, Fransioli J, Sussman MA (2009) Enhancement of myocardial regeneration through genetic engineering of cardiac progenitor cells expressing Pim-1 kinase. Circulation 120:2077–2087. doi:10.1161/CIRCULATIONAHA.109.884403

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Flaherty MP, Kamerzell TJ, Dawn B (2012) Wnt signaling and cardiac differentiation. Prog Mol Biol Transl Sci 111:153–174. doi:10.1016/B978-0-12-398459-3.00007-1

    Article  CAS  PubMed  Google Scholar 

  15. Fransioli J, Bailey B, Gude NA, Cottage CT, Muraski JA, Emmanuel G, Wu W, Alvarez R, Rubio M, Ottolenghi S, Schaefer E, Sussman MA (2008) Evolution of the c-kit-positive cell response to pathological challenge in the myocardium. Stem Cells 26:1315–1324. doi:10.1634/stemcells.2007-0751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Gnecchi M, He H, Liang OD, Melo LG, Morello F, Mu H, Noiseux N, Zhang L, Pratt RE, Ingwall JS, Dzau VJ (2005) Paracrine action accounts for marked protection of ischemic heart by Akt-modified mesenchymal stem cells. Nat Med 11:367–368. doi:10.1038/nm0405-367

    Article  CAS  PubMed  Google Scholar 

  17. Gnecchi M, Zhang Z, Ni A, Dzau VJ (2008) Paracrine mechanisms in adult stem cell signaling and therapy. Circ Res 103:1204–1219. doi:10.1161/CIRCRESAHA.108.176826

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Gude NA, Emmanuel G, Wu W, Cottage CT, Fischer K, Quijada P, Muraski JA, Alvarez R, Rubio M, Schaefer E, Sussman MA (2008) Activation of Notch-mediated protective signaling in the myocardium. Circ Res 102:1025–1035. doi:10.1161/CIRCRESAHA.107.164749

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  19. Guentchev M, McKay RD (2006) Notch controls proliferation and differentiation of stem cells in a dose-dependent manner. Eur J Neurosci 23:2289–2296. doi:10.1111/j.1460-9568.2006.04766.x

    Article  PubMed  Google Scholar 

  20. Heusch G (2011) SCIPIO brings new momentum to cardiac cell therapy. Lancet 378:1827–1828. doi:10.1016/S0140-6736(11)61648-6

    Article  PubMed  Google Scholar 

  21. High FA, Epstein JA (2008) The multifaceted role of Notch in cardiac development and disease. Nat Rev Genet 9:49–61. doi:10.1038/nrg2279

    Article  CAS  PubMed  Google Scholar 

  22. High FA, Lu MM, Pear WS, Loomes KM, Kaestner KH, Epstein JA (2008) Endothelial expression of the Notch ligand Jagged1 is required for vascular smooth muscle development. Proc Natl Acad Sci USA 105:1955–1959. doi:10.1073/pnas.0709663105

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Hong KU, Li QH, Guo Y, Patton NS, Moktar A, Bhatnagar A, Bolli R (2013) A highly sensitive and accurate method to quantify absolute numbers of c-kit+ cardiac stem cells following transplantation in mice. Basic Res Cardiol 108:346. doi:10.1007/s00395-013-0346-0

    Article  PubMed Central  PubMed  Google Scholar 

  24. Hu S, Yan G, Xu H, He W, Liu Z, Ma G (2014) Hypoxic preconditioning increases survival of cardiac progenitor cells via the pim-1 kinase-mediated anti-apoptotic effect. Circ J 78:724–731

    Article  CAS  PubMed  Google Scholar 

  25. Huang C, Gu H, Yu Q, Manukyan MC, Poynter JA, Wang M (2011) Sca-1 + cardiac stem cells mediate acute cardioprotection via paracrine factor SDF-1 following myocardial ischemia/reperfusion. PLoS One 6:e29246. doi:10.1371/journal.pone.0029246

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S (2007) Crossing paths with Notch in the hyper-network. Curr Opin Cell Biol 19:166–175. doi:10.1016/j.ceb.2007.02.012

    Article  CAS  PubMed  Google Scholar 

  27. Jain R, Rentschler S, Epstein JA (2010) Notch and cardiac outflow tract development. Ann N Y Acad Sci 1188:184–190. doi:10.1111/j.1749-6632.2009.05099.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Johnson AM, Kartha CC (2014) Proliferation of murine c-kit(pos) cardiac stem cells stimulated with IGF-1 is associated with Akt-1 mediated phosphorylation and nuclear export of FoxO3a and its effect on downstream cell cycle regulators. Growth Factors 32:53–62. doi:10.3109/08977194.2014.889694

    Article  CAS  PubMed  Google Scholar 

  29. Kishore R, Verma SK, Mackie AR, Vaughan EE, Abramova TV, Aiko I, Krishnamurthy P (2013) Bone marrow progenitor cell therapy-mediated paracrine regulation of cardiac miRNA-155 modulates fibrotic response in diabetic hearts. PLoS One 8:e60161. doi:10.1371/journal.pone.0060161

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Konstandin MH, Toko H, Gastelum GM, Quijada P, De La Torre A, Quintana M, Collins B, Din S, Avitabile D, Volkers M, Gude N, Fassler R, Sussman MA (2013) Fibronectin is essential for reparative cardiac progenitor cell response after myocardial infarction. Circ Res 113:115–125. doi:10.1161/CIRCRESAHA.113.301152

    Article  CAS  PubMed  Google Scholar 

  31. Koyanagi M, Bushoven P, Iwasaki M, Urbich C, Zeiher AM, Dimmeler S (2007) Notch signaling contributes to the expression of cardiac markers in human circulating progenitor cells. Circ Res 101:1139–1145. doi:10.1161/CIRCRESAHA.107.151381

    Article  CAS  PubMed  Google Scholar 

  32. Kratsios P, Catela C, Salimova E, Huth M, Berno V, Rosenthal N, Mourkioti F (2010) Distinct roles for cell-autonomous Notch signaling in cardiomyocytes of the embryonic and adult heart. Circ Res 106:559–572. doi:10.1161/CIRCRESAHA.109.203034

    Article  CAS  PubMed  Google Scholar 

  33. Kurpinski K, Lam H, Chu J, Wang A, Kim A, Tsay E, Agrawal S, Schaffer DV, Li S (2010) Transforming growth factor-beta and Notch signaling mediate stem cell differentiation into smooth muscle cells. Stem Cells 28:734–742. doi:10.1002/stem.319

    Article  CAS  PubMed  Google Scholar 

  34. Li Y, Hiroi Y, Ngoy S, Okamoto R, Noma K, Wang CY, Wang HW, Zhou Q, Radtke F, Liao R, Liao JK (2011) Notch1 in bone marrow-derived cells mediates cardiac repair after myocardial infarction. Circulation 123:866–876. doi:10.1161/CIRCULATIONAHA.110.947531

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Liu ZJ, Li Y, Tan Y, Xiao M, Zhang J, Radtke F, Velazquez OC (2012) Inhibition of fibroblast growth by Notch1 signaling is mediated by induction of Wnt11-dependent WISP-1. PLoS One 7:e38811. doi:10.1371/journal.pone.0038811

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Makkar RR, Smith RR, Cheng K, Malliaras K, Thomson LE, Berman D, Czer LS, Marban L, Mendizabal A, Johnston PV, Russell SD, Schuleri KH, Lardo AC, Gerstenblith G, Marban E (2012) Intracoronary cardiosphere-derived cells for heart regeneration after myocardial infarction (CADUCEUS): a prospective, randomised phase 1 trial. Lancet 379:895–904. doi:10.1016/S0140-6736(12)60195-0

    Article  PubMed Central  PubMed  Google Scholar 

  37. Malliaras K, Makkar RR, Smith RR, Cheng K, Wu E, Bonow RO, Marban L, Mendizabal A, Cingolani E, Johnston PV, Gerstenblith G, Schuleri KH, Lardo AC, Marban E (2014) Intracoronary cardiosphere-derived cells after myocardial infarction: evidence of therapeutic regeneration in the final 1-year results of the CADUCEUS trial (CArdiosphere-Derived aUtologous stem CElls to reverse ventricUlar dySfunction). J Am Coll Cardiol 63:110–122. doi:10.1016/j.jacc.2013.08.724

    Article  PubMed Central  PubMed  Google Scholar 

  38. Manderfield LJ, High FA, Engleka KA, Liu F, Li L, Rentschler S, Epstein JA (2012) Notch activation of Jagged1 contributes to the assembly of the arterial wall. Circulation 125:314–323. doi:10.1161/CIRCULATIONAHA.111.047159

    Article  PubMed Central  PubMed  Google Scholar 

  39. Mohsin S, Khan M, Nguyen J, Alkatib M, Siddiqi S, Hariharan N, Wallach K, Monsanto M, Gude N, Dembitsky W, Sussman MA (2013) Rejuvenation of human cardiac progenitor cells with Pim-1 kinase. Circ Res 113:1169–1179. doi:10.1161/CIRCRESAHA.113.302302

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Mohsin S, Khan M, Toko H, Bailey B, Cottage CT, Wallach K, Nag D, Lee A, Siddiqi S, Lan F, Fischer KM, Gude N, Quijada P, Avitabile D, Truffa S, Collins B, Dembitsky W, Wu JC, Sussman MA (2012) Human cardiac progenitor cells engineered with Pim-I kinase enhance myocardial repair. J Am Coll Cardiol 60:1278–1287. doi:10.1016/j.jacc.2012.04.047

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Mohsin S, Siddiqi S, Collins B, Sussman MA (2011) Empowering adult stem cells for myocardial regeneration. Circ Res 109:1415–1428. doi:10.1161/CIRCRESAHA.111.243071

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Nemir M, Metrich M, Plaisance I, Lepore M, Cruchet S, Berthonneche C, Sarre A, Radtke F, Pedrazzini T (2012) The Notch pathway controls fibrotic and regenerative repair in the adult heart. Eur Heart J. doi:10.1093/eurheartj/ehs269

    PubMed Central  PubMed  Google Scholar 

  43. Nurzynska D, Di Meglio F, Romano V, Miraglia R, Sacco AM, Latino F, Bancone C, Della Corte A, Maiello C, Amarelli C, Montagnani S, Castaldo C (2013) Cardiac primitive cells become committed to a cardiac fate in adult human heart with chronic ischemic disease but fail to acquire mature phenotype: genetic and phenotypic study. Basic Res Cardiol 108:320. doi:10.1007/s00395-012-0320-2

    Article  PubMed  Google Scholar 

  44. Oie E, Sandberg WJ, Ahmed MS, Yndestad A, Laerum OD, Attramadal H, Aukrust P, Eiken HG (2010) Activation of Notch signaling in cardiomyocytes during post-infarction remodeling. Scand Cardiovasc J 44:359–366. doi:10.3109/14017431.2010.511256

    Article  CAS  PubMed  Google Scholar 

  45. Pedrazzini T (2007) Control of cardiogenesis by the notch pathway. Trends Cardiovasc Med 17:83–90. doi:10.1016/j.tcm.2007.01.003

    Article  CAS  PubMed  Google Scholar 

  46. Pei H, Yu Q, Xue Q, Guo Y, Sun L, Hong Z, Han H, Gao E, Qu Y, Tao L (2013) Notch1 cardioprotection in myocardial ischemia/reperfusion involves reduction of oxidative/nitrative stress. Basic Res Cardiol 108:373. doi:10.1007/s00395-013-0373-x

    Article  PubMed  Google Scholar 

  47. Quijada P, Sussman MA (2014) Making it stick: chasing the optimal stem cells for cardiac regeneration. Expert Rev Cardiovasc Ther 12:1275–1288. doi:10.1586/14779072.2014.972941

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Rogers TB, Pati S, Gaa S, Riley D, Khakoo AY, Patel S, Wardlow RD 2nd, Frederick CA, Hall G, He LP, Lederer WJ (2011) Mesenchymal stem cells stimulate protective genetic reprogramming of injured cardiac ventricular myocytes. J Mol Cell Cardiol 50:346–356. doi:10.1016/j.yjmcc.2010.09.001

    Article  CAS  PubMed  Google Scholar 

  49. Sacchi V, Mittermayr R, Hartinger J, Martino MM, Lorentz KM, Wolbank S, Hofmann A, Largo RA, Marschall JS, Groppa E, Gianni-Barrera R, Ehrbar M, Hubbell JA, Redl H, Banfi A (2014) Long-lasting fibrin matrices ensure stable and functional angiogenesis by highly tunable, sustained delivery of recombinant VEGF164. Proc Natl Acad Sci USA 111:6952–6957. doi:10.1073/pnas.1404605111

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Sanada F, Kim J, Czarna A, Chan NY, Signore S, Ogorek B, Isobe K, Wybieralska E, Borghetti G, Pesapane A, Sorrentino A, Mangano E, Cappetta D, Mangiaracina C, Ricciardi M, Cimini M, Ifedigbo E, Perrella MA, Goichberg P, Choi AM, Kajstura J, Hosoda T, Rota M, Anversa P, Leri A (2014) c-Kit-positive cardiac stem cells nested in hypoxic niches are activated by stem cell factor reversing the aging myopathy. Circ Res 114:41–55. doi:10.1161/CIRCRESAHA.114.302500

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Siddiqi S, Sussman MA (2013) Cell and gene therapy for severe heart failure patients: the time and place for Pim-1 kinase. Expert Rev Cardiovasc Ther 11:949–957. doi:10.1586/14779072.2013.814830

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Tierney MT, Aydogdu T, Sala D, Malecova B, Gatto S, Puri PL, Latella L, Sacco A (2014) STAT3 signaling controls satellite cell expansion and skeletal muscle repair. Nat Med 20:1182–1186. doi:10.1038/nm.3656

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Urbanek K, Cabral-da-Silva MC, Ide-Iwata N, Maestroni S, Delucchi F, Zheng H, Ferreira-Martins J, Ogorek B, D’Amario D, Bauer M, Zerbini G, Rota M, Hosoda T, Liao R, Anversa P, Kajstura J, Leri A (2010) Inhibition of notch1-dependent cardiomyogenesis leads to a dilated myopathy in the neonatal heart. Circ Res 107:429–441. doi:10.1161/CIRCRESAHA.110.218487

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Urbanek K, Cesselli D, Rota M, Nascimbene A, De Angelis A, Hosoda T, Bearzi C, Boni A, Bolli R, Kajstura J, Anversa P, Leri A (2006) Stem cell niches in the adult mouse heart. Proc Natl Acad Sci USA 103:9226–9231. doi:10.1073/pnas.0600635103

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Urbanek K, Rota M, Cascapera S, Bearzi C, Nascimbene A, De Angelis A, Hosoda T, Chimenti S, Baker M, Limana F, Nurzynska D, Torella D, Rotatori F, Rastaldo R, Musso E, Quaini F, Leri A, Kajstura J, Anversa P (2005) Cardiac stem cells possess growth factor-receptor systems that after activation regenerate the infarcted myocardium, improving ventricular function and long-term survival. Circ Res 97:663–673. doi:10.1161/01.RES.0000183733.53101.11

    Article  CAS  PubMed  Google Scholar 

  56. Williams AR, Hatzistergos KE, Addicott B, McCall F, Carvalho D, Suncion V, Morales AR, Da Silva J, Sussman MA, Heldman AW, Hare JM (2013) Enhanced effect of combining human cardiac stem cells and bone marrow mesenchymal stem cells to reduce infarct size and to restore cardiac function after myocardial infarction. Circulation 127:213–223. doi:10.1161/CIRCULATIONAHA.112.131110

    Article  PubMed Central  PubMed  Google Scholar 

  57. Yuan ZR, Kobayashi N, Kohsaka T (2006) Human Jagged 1 mutants cause liver defect in Alagille syndrome by overexpression of hepatocyte growth factor. J Mol Biol 356:559–568. doi:10.1016/j.jmb.2005.11.097

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Thank you to all members of the Sussman laboratory for critical reading of the manuscript. Thank you to Brett Collins and Daniela Michel for the excellent stewardship of the mouse colony. Thank you to Cameron Smurthwaite for assistance with flow cytometry performed in the SDSU FACS Core Facility. This study is supported by Grants of the National Institute of Health to Mark Sussman (R37HL091102, R01HL105759, R01HL067245, R01HL113647, R01HL117163, P01HL085577, R01HL122525), and to Pearl Quijada (F31HL117623). Grants of the American Heart Association support Natalie Gude (14BGIA187300511), Nirmala Hariharan (12POST12060191) and Haruhiro Toko (11POST7610164). Veronica Sacchi is funded by the Swiss National Science Foundation Fellowship (P2BSP3_155252). Mirko Voelkers was supported by the Deutsche Forschungsgemeinschaft DFG (1669/1-1). M. Villanueva is a SDSU/IMSD/MBRS scholar and CIRM undergraduate intern.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark A. Sussman.

Electronic supplementary material

Below is the link to the electronic supplementary material.

395_2015_488_MOESM1_ESM.pptx

Supplemental Figure 1: Ligand mediated activation of Notch signaling increases cell area and decreases proliferation in CPC. Proliferation of CPCe and CPCeK treated with PBS (A) or 1μM tamoxifen (TMX, B) using CyQuant Assay normalized to day 0. Live images of CPCe (C) and CPCeK (D) after treatment for three days with PBS or TMX. Scale bar equals 40 μm. ***p<0.001. Significance determined by two-way ANOVA with Bonferonni’s multiple comparisons test. Data combines at least three experiments, with three replicates per data point. (PPTX 14253 kb)

395_2015_488_MOESM2_ESM.pptx

Supplemental Figure 2: Notch signaling increases mTORC1 signaling in CPCeK. Levels of phosphorylated ribosomal S6 (p-rS6) and Akt (p-Akt) (A), S6Kinase (p-S6K) and ERK 1/2 (p-ERK 1/2) (B), and 4EBP1 (p-4EBP1) (C) in CPCe versus CPCeK cultured in growth media with 10% FBS. CPCe = e and CPCeK = K in (C). **p<0.01, ***p<0.001. Significance determined by two-tailed t-test. (PPTX 583 kb)

395_2015_488_MOESM3_ESM.pptx

Supplemental Figure 3: Canonical Notch targets are induced in CPCs in response to Notch activation. Message levels of hey1 (A), hey2 (B) and jagged1 (C) in CPCe and CPCeK treated with Jagged1 (left panel) or 1μM tamoxifen (right panel) to augment Notch activity. Significance in A-C determined by ordinary one-way ANOVA using Tukey’s multiple comparisons test. *p<0.05, **p<0.01, ***p<0.001 versus CPCe PBS or CPCe BSA. #p<0.05, #p<0.01, ###p<0.001 versus CPCe JDG1 or CPCe TMX. $p<0.05, $$p<0.01, $$$p<0.001 versus CPCeK BSA or CPCeK PBS. (PPTX 202 kb)

395_2015_488_MOESM4_ESM.pptx

Supplemental Figure 4: Expression of myocyte lineage markers in CPCs in response to Notch activation. Message levels of cardiac troponin T (cTnT, A), GATA4 (B) and MEF2C (C) in CPCe and CPCeK treated with Jagged1 (left panel) or 1μM tamoxifen (right panel) to augment Notch activity. Protein levels of von Willebrand’s Factor and Mef2c (D) as quantitated by immunoblot. Significance in A-C determined by one-way ANOVA using Tukey’s multiple comparisons test. *p<0.05, **p<0.01, ***p<0.001 versus CPCe PBS or CPCe BSA. #p<0.05, #p<0.01, ###p<0.001 versus CPCe JDG1 or CPCe TMX. $p<0.05, $$p<0.01, $$$p<0.001 versus CPCeK BSA or CPCeK PBS. Significance in D measured by two-tailed t-test. **p<0.01, ***p<0.001 (PPTX 400 kb)

395_2015_488_MOESM5_ESM.pptx

Supplemental Figure 5: HGF mRNA levels are suppressed and wnt11 expression is induced by Notch activation. Message levels of HGF in CPCe and CPCeK treated with Jagged1 (A) or 1μM tamoxifen (B) to augment Notch activity. Wnt11 mRNA in CPCe and CPCeK treated overnight with PBS or 1μM tamoxifen as measured by qPCR. Significance measured by one-way ANOVA using Tukey’s multiple comparison’s test. ***p<0.001 versus CPCe PBS or BSA, ###p<0.001 versus CPCe JGD1 or TMX, $$$p<0.001 versus CPCeK PBS. (PPTX 159 kb)

Supplementary material 6 (DOCX 120 kb)

Supplementary material 7 (DOCX 80 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gude, N., Joyo, E., Toko, H. et al. Notch activation enhances lineage commitment and protective signaling in cardiac progenitor cells. Basic Res Cardiol 110, 29 (2015). https://doi.org/10.1007/s00395-015-0488-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00395-015-0488-3

Keywords

Navigation