Skip to main content
Log in

Broccoli microgreens juice reduces body weight by enhancing insulin sensitivity and modulating gut microbiota in high-fat diet-induced C57BL/6J obese mice

  • Original Contribution
  • Published:
European Journal of Nutrition Aims and scope Submit manuscript

Abstract

Purpose

This study aimed to explore the protective effect of broccoli microgreens juice (BMJ) during C57BL/6J mice obesity development.

Methods

The obese model mice, induced by feeding high-fat diet (HFD), were treated with BMJ by gavage for 10 weeks. Melbine was gavaged at 300 mg/(kg bw)/d, as a positive control group.

Results

BMJ supplementation significantly reduced white adipose tissues (WAT) mass, the body weight and adipocyte size, and increased water intake in HFD-fed mice. Moreover, it improved glucose tolerance, reduced insulin level and HOMA-IR value, and alleviated insulin resistance. Compared with the HFD group, BMJ supplementation significantly increased the relative abundance of Bacteroidetes and decreased the ratio of Firmicutes to Bacteroidetes at the phylum level, and enriched Bacteroides_acidifaciens at the species level. These changes in the composition of gut microbiota are associated with the production of short-chain fatty acids (SCFAs), and reduced LPS levels, and had an obvious anti-inflammatory effect.

Conclusions

These findings suggested that the protective effects of BMJ on diet-induced obesity may be involved in gut microbiota–SCFAs–LPS–inflammatory axis. In addition, BMJ can enhance liver antioxidant capacity and reduce liver fat accumulation. Consequently, these results sustain BMJ as a novel functional food for obesity, on the basis of its opposing effects on HFD-induced obesity in mice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Eva Lau DC, Pina-Vaz C, Barbosa J-A, Freitas P (2015) Beyond gut microbiota: understanding obesity and type 2 diabetes. Hormones 14(3):358–369

    PubMed  Google Scholar 

  2. Kelly T, Yang W, Chen CS, Reynolds K, He J (2008) Global burden of obesity in 2005 and projections to 2030. Int J Obes 32(9):1431–1437. https://doi.org/10.1038/ijo.2008.102

    Article  CAS  Google Scholar 

  3. Lee MJ, Wu Y, Fried SK (2013) Adipose tissue heterogeneity: implication of depot differences in adipose tissue for obesity complications. Mol Asp Med 34(1):1–11. https://doi.org/10.1016/j.mam.2012.10.001

    Article  CAS  Google Scholar 

  4. Gesta S, Tseng YH, Kahn CR (2007) Developmental origin of fat: tracking obesity to its source. Cell 131(2):242–256. https://doi.org/10.1016/j.cell.2007.10.004

    Article  CAS  PubMed  Google Scholar 

  5. Choe SS, Huh JY, Hwang IJ, Kim JI, Kim JB (2016) Adipose tissue remodeling: its role in energy metabolism and metabolic disorders. Front Endocrinol 7:30. https://doi.org/10.3389/fendo.2016.00030

    Article  Google Scholar 

  6. Miyazaki Y, Glass L, Triplitt C, Wajcberg E, Mandarino LJ, DeFronzo RA (2002) Abdominal fat distribution and peripheral and hepatic insulin resistance in type 2 diabetes mellitus. Am J Physiol Endocrinol Metab 283(6):E1135-1143. https://doi.org/10.1152/ajpendo.0327.2001

    Article  CAS  PubMed  Google Scholar 

  7. Hwang I, Jo K, Shin KC, Kim JI, Ji Y, Park YJ, Park J, Jeon YG, Ka S, Suk S, Noh HL, Choe SS, Alfadda AA, Kim JK, Kim S, Kim JB (2019) GABA-stimulated adipose-derived stem cells suppress subcutaneous adipose inflammation in obesity. Proc Natl Acad Sci USA 116(24):11936–11945. https://doi.org/10.1073/pnas.1822067116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Nikolopoulou A, Kadoglou NP (2012) Obesity and metabolic syndrome as related to cardiovascular disease. Expert Rev Cardiovasc Ther 10(7):933–939. https://doi.org/10.1586/erc.12.74

    Article  CAS  PubMed  Google Scholar 

  9. Kargulewicz A, Szulinska M, Kujawska-Luczak M, Swora-Cwynar E, Musialik K, Grzymislawska M, Kregielska-Narozna M, Bogdanski P (2016) Improvement of serum adiponectin and leptin concentrations: effects of a low-calorie or isocaloric diet combined with metformin or orlistat—a prospective randomized open-label trial. Eur Rev Med Pharmacol Sci 20(18):3868–3876

    CAS  PubMed  Google Scholar 

  10. Baldane S, Ipekci SH, Kebapcilar L (2016) Pancrelipase treatment in a patient with the history of Roux-en-Y gastric bypass operation that developed resistant hypocalcemia secondary to total thyroidectomy. Endocr Regul 50(1):27–31. https://doi.org/10.1515/enr-2016-0006

    Article  CAS  PubMed  Google Scholar 

  11. Chakrabarti M, Ghosh I, Jana A, Ghosh M, Mukherjee A (2017) Genotoxicity of antiobesity drug orlistat and effect of caffeine intervention: an in vitro study. Drug Chem Toxicol 40(3):339–343. https://doi.org/10.1080/01480545.2016.1236128

    Article  CAS  PubMed  Google Scholar 

  12. Liu S, Chang X, Yu J, Xu W (2020) Cerasus humilis cherry polyphenol reduces high-fat diet-induced obesity in C57BL/6 mice by mitigating fat deposition, inflammation, and oxidation. J Agric Food Chem 68(15):4424–4436. https://doi.org/10.1021/acs.jafc.0c01617

    Article  CAS  PubMed  Google Scholar 

  13. Zou Y, Ju X, Chen W, Yuan J, Wang Z, Aluko RE, He R (2020) Rice bran attenuated obesity via alleviating dyslipidemia, browning of white adipocytes and modulating gut microbiota in high-fat diet-induced obese mice. Food Funct 11(3):2406–2417. https://doi.org/10.1039/c9fo01524h

    Article  CAS  PubMed  Google Scholar 

  14. Anhe FF, Nachbar RT, Varin TV, Trottier J, Dudonne S, Le Barz M, Feutry P, Pilon G, Barbier O, Desjardins Y, Roy D, Marette A (2018) Treatment with camu camu (Myrciaria dubia) prevents obesity by altering the gut microbiota and increasing energy expenditure in diet-induced obese mice. Gut. https://doi.org/10.1136/gutjnl-2017-315565

    Article  PubMed  Google Scholar 

  15. Liu X, Wang Y, Hoeflinger JL, Neme BP, Jeffery EH, Miller MJ (2017) Dietary broccoli alters rat cecal microbiota to improve glucoraphanin hydrolysis to bioactive isothiocyanates. Nutrients. https://doi.org/10.3390/nu9030262

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yingjian Lu, Dong W, Alcazar J, Yang T, Luo Y, Wang Q, Chen P (2018) Effect of preharvest CaCl2 spray and postharvest UV-B radiation on storage quality of broccoli microgreens, a richer source of glucosinolates. J Food Compos Anal 67(2018):55–62

    Google Scholar 

  17. Xu L, Nagata N, Ota T (2018) Glucoraphanin: a broccoli sprout extract that ameliorates obesity-induced inflammation and insulin resistance. Adipocyte 7(3):218–225. https://doi.org/10.1080/21623945.2018.1474669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wen F, Shi Z, Liu X, Tan Y, Wei L, Zhu X, Zhang H, Zhu X, Meng X, Ji W, Yang M, Lu Z (2020) Acute elevated resistin exacerbates mitochondrial damage and aggravates liver steatosis through AMPK/PGC-1alpha signaling pathway in male NAFLD mice. Horm Metab Res. https://doi.org/10.1055/a-1293-8250

    Article  PubMed  Google Scholar 

  19. Aborehab NM, El Bishbishy MH, Waly NE (2016) Resistin mediates tomato and broccoli extract effects on glucose homeostasis in high fat diet-induced obesity in rats. BMC Complement Altern Med 16:225. https://doi.org/10.1186/s12906-016-1203-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wu Y, Shen Y, Zhu Y, Mupunga J, Zou L, Liu C, Liu S, Mao J (2019) Broccoli ingestion increases the glucosinolate hydrolysis activity of microbiota in the mouse gut. Int J Food Sci Nutr 70(5):585–594. https://doi.org/10.1080/09637486.2018.1554624

    Article  CAS  PubMed  Google Scholar 

  21. Li X, Xu Q, Jiang T, Fang S, Wang G, Zhao J, Zhang H, Chen W (2016) A comparative study of the antidiabetic effects exerted by live and dead multi-strain probiotics in the type 2 diabetes model of mice. Food Funct 7(12):4851–4860. https://doi.org/10.1039/c6fo01147k

    Article  CAS  PubMed  Google Scholar 

  22. Cani PD, Amar J, Iglesias MA, Poggi M, Knauf C, Bastelica D, Neyrinck AM, Fava F, Tuohy KM, Chabo C, Waget A, Delmee E, Cousin B, Sulpice T, Chamontin B, Ferrieres J, Tanti JF, Gibson GR, Casteilla L, Delzenne NM, Alessi MC, Burcelin R (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56(7):1761–1772. https://doi.org/10.2337/db06-1491

    Article  CAS  PubMed  Google Scholar 

  23. Kou L, Yang T, Luo Y, Liu X, Huang L, Eton Codling (2014) Pre-harvest calcium application increases biomass and delays senescence of broccoli microgreens. Postharvest Biol Technol 87:70–78

    Article  CAS  Google Scholar 

  24. Theander O, Aman P, Westerlund E, Andersson R, Pettersson D (1995) Total dietary fiber determined as neutral sugar residues, uronic acid residues, and Klason lignin (the Uppsala method): collaborative study. J AOAC Int 78(4):1030–1044

    Article  CAS  Google Scholar 

  25. (AOAC) AoOAC (1990) Official methods of analyses, 15th edn. Association of Official Agricultural Chemists, Washington

    Google Scholar 

  26. ISO (2005) ISO 14502–1: 2005. Determination of substances characteristic of green and black tea. Part 1: content of total polyphenols in tea. Colorimetric method using Folin-Ciocalteu reagent. ISO

    Google Scholar 

  27. Saha S, Hollands W, Teucher B, Needs PW, Narbad A, Ortori CA, Barrett DA, Rossiter JT, Mithen RF, Kroon PA (2012) Isothiocyanate concentrations and interconversion of sulforaphane to erucin in human subjects after consumption of commercial frozen broccoli compared to fresh broccoli. Mol Nutr Food Res 56(12):1906–1916. https://doi.org/10.1002/mnfr.201200225

    Article  CAS  PubMed  Google Scholar 

  28. Romeu-Nadal M, Morera-Pons S, Castellote AI, Lopez-Sabater MC (2006) Rapid high-performance liquid chromatographic method for Vitamin C determination in human milk versus an enzymatic method. J Chromatogr B Anal Technol Biomed Life Sci 830(1):41–46. https://doi.org/10.1016/j.jchromb.2005.10.018

    Article  CAS  Google Scholar 

  29. Mullis LA, Spears JW, McCraw BL (2003) Effects of breed (Angus vs Simmental) and copper and zinc source on mineral status of steers fed high dietary iron. J Anim Sci 81(1):318–322. https://doi.org/10.2527/2003.811318x

    Article  CAS  PubMed  Google Scholar 

  30. Rubanza CD, Shem MN, Bakengesa SS, Ichinohe T, Fujihara T (2007) The content of protein, fibre and minerals of leaves of selected Acacia species indigenous to north-western Tanzania. Arch Anim Nutr 61(2):151–156. https://doi.org/10.1080/17450390701203907

    Article  CAS  PubMed  Google Scholar 

  31. Haffner SM, Greenberg AS, Weston WM, Chen H, Williams K, Freed MI (2002) Effect of rosiglitazone treatment on nontraditional markers of cardiovascular disease in patients with type 2 diabetes mellitus. Circulation 106(6):679–684

    Article  CAS  Google Scholar 

  32. Kim H, Kang J, Hong S, Jo S, Noh H, Kang BH, Park S, Seo YJ, Kong KH, Hong S (2020) 3M-brazzein as a natural sugar substitute attenuates obesity, metabolic disorder, and inflammation. J Agric Food Chem 68(7):2183–2192. https://doi.org/10.1021/acs.jafc.0c00317

    Article  CAS  PubMed  Google Scholar 

  33. Li P, Killinger BA, Ensink E, Beddows I, Yilmaz A, Lubben N, Lamp J, Schilthuis M, Vega IE, Woltjer R, Pospisilik JA, Brundin P, Brundin L, Graham SF, Labrie V (2021) Gut microbiota dysbiosis is associated with elevated bile acids in Parkinson’s disease. Metabolites. https://doi.org/10.3390/metabo11010029

    Article  PubMed  PubMed Central  Google Scholar 

  34. Liu J, He Z, Ma N, Chen ZY (2020) Beneficial effects of dietary polyphenols on high-fat diet-induced obesity linking with modulation of gut microbiota. J Agric Food Chem 68(1):33–47. https://doi.org/10.1021/acs.jafc.9b06817

    Article  CAS  PubMed  Google Scholar 

  35. Rodriguez-Morato J, Matthan NR (2020) Nutrition and gastrointestinal microbiota, microbial-derived secondary bile acids, and cardiovascular disease. Curr Atheroscler Rep 22(9):47. https://doi.org/10.1007/s11883-020-00863-7

    Article  CAS  PubMed  Google Scholar 

  36. Song Y, Wu MS, Tao G, Lu MW, Lin J, Huang JQ (2020) Feruloylated oligosaccharides and ferulic acid alter gut microbiome to alleviate diabetic syndrome. Food Res Int 137:109410. https://doi.org/10.1016/j.foodres.2020.109410

    Article  CAS  PubMed  Google Scholar 

  37. Delzenne NM, Cani PD (2011) Interaction between obesity and the gut microbiota: relevance in nutrition. Annu Rev Nutr 31(1):15–31. https://doi.org/10.1146/annurev-nutr-072610-145146

    Article  CAS  PubMed  Google Scholar 

  38. Muthayya S, Sugimoto JD, Montgomery S, Maberly GF (2014) An overview of global rice production, supply, trade, and consumption. Ann NY Acad Sci 1324:7–14. https://doi.org/10.1111/nyas.12540

    Article  PubMed  Google Scholar 

  39. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, JC M, (1990) CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 249:1431–1433

    Article  CAS  Google Scholar 

  40. Sweet MJ, Hume DA (1996) Endotoxin signal transduction in macrophages. J Leukoc Biol 60:8–26

    Article  CAS  Google Scholar 

  41. Mays ZJS, Chappell TC, Nair NU (2020) Quantifying and engineering mucus adhesion of probiotics. ACS Synth Biol 9(2):356–367. https://doi.org/10.1021/acssynbio.9b00356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Long X, Zeng X, Tan F, Yi R, Pan Y, Zhou X, Mu J, Zhao X (2020) Lactobacillus plantarum KFY04 prevents obesity in mice through the PPAR pathway and alleviates oxidative damage and inflammation. Food Funct 11(6):5460–5472. https://doi.org/10.1039/d0fo00519c

    Article  CAS  PubMed  Google Scholar 

  43. Ruhee RT, Ma S, Suzuki K (2020) Protective effects of sulforaphane on exercise-induced organ damage via inducing antioxidant defense responses. Antioxidants. https://doi.org/10.3390/antiox9020136

    Article  PubMed  PubMed Central  Google Scholar 

  44. Gasmi A, Mujawdiya PK, Shanaida M, Ongenae A, Lysiuk R, Dosa MD, Tsal O, Piscopo S, Chirumbolo S, Bjorklund G (2020) Calanus oil in the treatment of obesity-related low-grade inflammation, insulin resistance, and atherosclerosis. Appl Microbiol Biot 104(3):967–979. https://doi.org/10.1007/s00253-019-10293-4

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31801545), Natural Science Foundation of Jiangsu Province (SBK2018042932), Open project of China Canada food nutrition and health Joint Laboratory (ZJ-2020-07), China Postdoctoral Science Foundation funded project (2020M671517), Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX19_1422).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yingjian Lu.

Ethics declarations

Conflict of interest

The authors have declared no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Tian, S., Wang, Y. et al. Broccoli microgreens juice reduces body weight by enhancing insulin sensitivity and modulating gut microbiota in high-fat diet-induced C57BL/6J obese mice. Eur J Nutr 60, 3829–3839 (2021). https://doi.org/10.1007/s00394-021-02553-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00394-021-02553-9

Keywords

Navigation