Skip to main content
Log in

Expression of β-F1-ATPase and mitochondrial transcription factor A and the change in mitochondrial DNA content in colorectal cancer: clinical data analysis and evidence from an in vitro study

  • Original Article
  • Published:
International Journal of Colorectal Disease Aims and scope Submit manuscript

Abstract

Purpose

Mitochondria play an important role in regulating apoptosis and thus may be involved in tumor progression. This study was conducted to elucidate the role of mitochondrial dysfunction in colorectal cancer (CRC).

Methods

Mitochondrial DNA (mtDNA) content was analyzed with real-time polymerase chain reaction in 153 CRC patients who had received surgery at the Taipei Veterans General Hospital from January 1999 to December 2000. The expression of mitochondrial transcription factor A (TFAM) and β-F1-ATPase were analyzed using immunohistochemistry. HCT116 cells were cultured in 1% O2 for at least 20 passages. Mitochondrial biogenesis, ATP production, and the apoptotic response to 5-fluorouracil were analyzed in the derived cells.

Results

Disease stage was associated with changes in mtDNA content (p < 0.001), expression of TFAM (p = 0.004), and/or β-F1-ATPase (p < 0.001). CRCs with low expression of TFAM or β-F1-ATPase had a lower mtDNA content. In the multivariate analysis, disease stage was the most significant prognostic factor [95% confidence interval (CI), 2.82–6.23], followed by β-F1-ATPase [95% CI, 1.10–4.10]. In patients receiving 5-FU based chemotherapy, the 5-year disease-free survival rate was only 27% in CRC patients with a low β-F1-ATPase tumor and was significantly lower than that in those with a high β-F1-ATPase tumor (60%; p = 0.042). In the hypoxia-treated cells, mitochondrial mass increased, mtDNA content decreased, sensitivity to 5-fluorouracil decreased, and β-F1-ATPase expression decreased.

Conclusion

Mitochondrial dysfunction may be associated with poor outcomes in CRC patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  PubMed  CAS  Google Scholar 

  2. Ferri KF, Kroemer G (2001) Organelle-specific initiation of cell death pathways. Nat Cell Biol 3:E255–E263

    Article  PubMed  CAS  Google Scholar 

  3. Wang X (2001) The expanding role of mitochondria in apoptosis. Genes Dev 15:2922–2933

    PubMed  CAS  Google Scholar 

  4. Jacobson MD, Weil M, Raff MC (1997) Programmed cell death in animal development. Cell 88:347–354

    Article  PubMed  CAS  Google Scholar 

  5. Thompson CB (1995) Apoptosis in the pathogenesis and treatment of disease. Science 267:1456–1462

    Article  PubMed  CAS  Google Scholar 

  6. Reed JC (1998) Mechanisms of apoptosis avoidance in cancer. Curr Opin Oncol 11:68–75

    Article  Google Scholar 

  7. Warburg O (1956) On the origin of cancer cells. Science 123:309–314

    Article  PubMed  CAS  Google Scholar 

  8. Fliss MS, Usadel H, Caballero OL et al (2000) Facile detection of mitochondrial DNA mutations in tumors and bodily fluids. Science 287:2017–2019

    Article  PubMed  CAS  Google Scholar 

  9. Liu VW, Shi HH, Cheung AN et al (2001) High incidence of somatic mitochondrial DNA mutations in human ovarian carcinomas. Cancer Res 61:5998–6001

    PubMed  CAS  Google Scholar 

  10. Parrella P, Xiao Y, Fliss M (2001) Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res 61:7623–7626

    PubMed  CAS  Google Scholar 

  11. Kumimoto H, Yamane Y, Nishimoto Y et al (2004) Frequent somatic mutations of mitochondrial DNA in esophageal squamous cell carcinoma. Int J Cancer 108:228–231

    Article  PubMed  CAS  Google Scholar 

  12. Cuezva JM, Krajewska M, de Heredia ML et al (2002) The bioenergetic signature of cancer: a marker of tumor progression. Cancer Res 62:6674–6681

    PubMed  CAS  Google Scholar 

  13. Ramanathan A, Wang C, Schreiber SL (2005) Perturbational profiling of a cell-line model of tumorigenesis by using metabolic measurements. Proc Natl Acad Sci U S A 102:5992–5997

    Article  PubMed  CAS  Google Scholar 

  14. Dey R, Moraes CT (2000) Lack of oxidative phosphorylation and low mitochondrial membrane potential decrease susceptibility to apoptosis and do not modulate the protective effect of Bcl-x(L) in osteosarcoma cells. J Biol Chem 275:7087–7094

    Article  PubMed  CAS  Google Scholar 

  15. Kim JY, Kim YH, Chang I et al (2002) Resistance of mitochondrial DNA-deficient cells to TRAIL: role of Bax in TRAIL-induced apoptosis. Oncogene 21:3139–3148

    Article  PubMed  CAS  Google Scholar 

  16. Santamaria G, Martinez-Diez M, Fabregat I, Cuezva JM (2006) Efficient execution of cell death in non-glycolytic cells requires the generation of ROS controlled by the activity of mitochondrial H+-ATP synthase. Carcinogenesis 27:925–935

    Article  PubMed  CAS  Google Scholar 

  17. Vaupel P, Thews O, Kelleher DK, Hoeckel M (1998) Oxygenation of human tumors: the Mainz experience. Strahlenther Onkol 174:6–12

    PubMed  Google Scholar 

  18. Vaupel P, Fortmeyer HP, Runkel S, Kallinowski F (1987) Blood flow, oxygen consumption, and tissue oxygenation of human breast cancer xenografts in nude rats. Cancer Res 47:3496–3503

    PubMed  CAS  Google Scholar 

  19. Walenta S, Wetterling M, Lehrke M et al (2000) High lactate levels predict likelihood of metastases, tumor recurrence, and restricted patient survival in human cervical cancers. Cancer Res 60:916–921

    PubMed  CAS  Google Scholar 

  20. Hockel M, Schlenger K, Aral B et al (1996) Association between tumor hypoxia and malignant progression in advanced cancer of the uterine cervix. Cancer Res 56:4509–4515

    PubMed  CAS  Google Scholar 

  21. Hockel M, Schlenger K, Hockel S, Vaupel P (1999) Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 59:4525–4528

    PubMed  CAS  Google Scholar 

  22. Brizel DM, Scully SP, Harrelson JM et al (1996) Tumor oxygenation predicts for the likelihood of distant metastases in human soft tissue sarcoma. Cancer Res 56:941–943

    PubMed  CAS  Google Scholar 

  23. Gaspari M, Falkenberg M, Larsson NG, Gustafsson CM (2004) The mitochondrial RNA polymerase contributes critically to promoter specificity in mammalian cells. EMBO J 23:4606–4614

    Article  PubMed  CAS  Google Scholar 

  24. Sobin LH, Wittekind C (1997) UICC TNM classification of malignant tumors, 5th edn. Wiley-Liss, New York, pp 66–69

    Google Scholar 

  25. Compton CC, Fielding LP, Burgart LJ et al (2000) Prognostic factors in colorectal cancer. College of American Pathologists Consensus Statement 1999. Arch Pathol Lab Med 124:979-994

    PubMed  CAS  Google Scholar 

  26. Mambo E, Chatterjee A, Xing M et al (2005) Tumor-specific changes in mtDNA content in human cancer. Int J Cancer 116:920–924

    Article  PubMed  CAS  Google Scholar 

  27. Chang SC, Lin JK, Yang SH (2006) Relationship between genetic alterations and prognosis in sporadic colorectal cancer. Int J Cancer 118:1721–1727

    Article  PubMed  CAS  Google Scholar 

  28. Fuller KM, Duffy CF, Arriaga EA (2002) Determination of the cardiolipin content of individual mitochondria by capillary electrophoresis with laser-induced fluorescence detection. Electrophoresis 23:1571–1576

    Article  PubMed  CAS  Google Scholar 

  29. Simonnet H, Alazard N, Pfeiffer K (2002) Low mitochondrial respiratory chain content correlates with tumor aggressiveness in renal cell carcinoma. Carcinogenesis 23:759–768

    Article  PubMed  CAS  Google Scholar 

  30. Meierhofer D, Mayr JA, Foetschl U et al (2004) Decrease of mitochondrial DNA content and energy metabolism in renal cell carcinoma. Carcinogenesis 25:1005–1010

    Article  PubMed  CAS  Google Scholar 

  31. Yin PH, Lee HC, Chau GY (2004) Alteration of the copy number and deletion of mitochondrial DNA in human hepatocellular carcinoma. Br J Cancer 90:2390–2396

    PubMed  CAS  Google Scholar 

  32. Lee HC, Yin PH, Lin JC (2005) Mitochondrial genome instability and mtDNA depletion in human cancers. Ann N Y Acad Sci 1042:109–122

    Article  PubMed  CAS  Google Scholar 

  33. Falkenberg M, Gaspari M, Rantanen A (2002) Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 31:289–294

    Article  PubMed  CAS  Google Scholar 

  34. Larsson NG, Wang J, Wilhelmsson H et al (1998) Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 18:231–236

    Article  PubMed  CAS  Google Scholar 

  35. Kim YH, Lee JH, Chun H (2002) Apoptosis and its correlation with proliferative activity in rectal cancer. J Surg Oncol 79:236–242

    Article  PubMed  Google Scholar 

  36. Lazaris AC, Davaris P, Nakopoulou L et al (1994) Correlation between immunohistochemical expression of proliferating cell nuclear antigen and flow cytometry parameters in colorectal neoplasia. Dis Colon Rectum 37:1083–1089

    Article  PubMed  CAS  Google Scholar 

  37. Walenta S, Snyder S, Haroon ZA (2001) Tissue gradients of energy metabolites mirror oxygen tension gradients in a rat mammary carcinoma model. Int J Radiat Oncol Biol Phys 51:840–848

    PubMed  CAS  Google Scholar 

  38. Shin YK, Yoo BC, Chang HJ (2005) Down-regulation of mitochondrial F1F0-ATP synthase in human colon cancer cells with induced 5-fluorouracil resistance. Cancer Res 65:3162–3170

    PubMed  CAS  Google Scholar 

  39. Shchepina LA, Pletjushkina OY, Avetisyan AV (2002) Oligomycin, inhibitor of the F0 part of H+-ATPsynthase, suppresses the TNF-induced apoptosis. Oncogene 21:8149–8157

    Article  PubMed  CAS  Google Scholar 

  40. Eguchi Y, Shimizu S, Tsujimoto Y (1997) Intracellular ATP levels determine cell death fate by apoptosis or necrosis. Cancer Res 57:1835–1840

    PubMed  CAS  Google Scholar 

  41. Matsuyama S, Xu Q, Velours J, Reed JC (1998) The mitochondrial F0F1-ATPase proton pump is required for function of the proapoptotic protein Bax in yeast and mammalian cells. Mol Cell 1:327–336

    Article  PubMed  CAS  Google Scholar 

  42. Goldstein JC, Waterhouse NJ, Juin P (2000) The coordinate release of cytochrome c during apoptosis is rapid, complete and kinetically invariant. Nat Cell Biol 2:156–162

    Article  PubMed  CAS  Google Scholar 

  43. Williams KJ, Cowen RL, Stratford IJ (2001) Hypoxia and oxidative stress. Tumour hypoxia-therapeutic considerations. Breast Cancer Res 3:328–331

    Article  PubMed  CAS  Google Scholar 

  44. Brown JM (1999) The hypoxic cell: a target for selective cancer therapy—eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 59:5863–5870

    PubMed  CAS  Google Scholar 

  45. Rofstad EK (2000) Microenvironment-induced cancer metastasis. Int J Radiat Biol 76:589–605

    Article  PubMed  CAS  Google Scholar 

  46. Petit PX, Lecoeur H, Zorn E et al (1995) Alterations in mitochondrial structure and function are early events of dexamethasone-induced thymocyte apoptosis. J Cell Biol 130:157–167

    Article  PubMed  CAS  Google Scholar 

  47. Petit PX, Zamzami N, Vayssiere JL, Mignotte B (1997) Implication of mitochondria in apoptosis. Mol Cell Biochem 174:185–188

    Article  PubMed  CAS  Google Scholar 

  48. Cavalli LR, Liang BC (1998) Mutagenesis, tumorigenicity, and apoptosis: are the mitochondria involved? Mutat Res 398:19–26

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. H. S. Lee for critically reading the manuscript and for suggesting improvements. The statistical analysis was performed by Miss LingZhen Dai. This study was supported in part by grants from the Taipei Veterans General Hospital (VGH94-0248) and the National Science Council (NSC92-2314-B075-100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shih-Ching Chang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, PC., Lin, JK., Yang, SH. et al. Expression of β-F1-ATPase and mitochondrial transcription factor A and the change in mitochondrial DNA content in colorectal cancer: clinical data analysis and evidence from an in vitro study. Int J Colorectal Dis 23, 1223–1232 (2008). https://doi.org/10.1007/s00384-008-0539-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00384-008-0539-4

Keywords

Navigation