Skip to main content
Log in

Comparative patterns of adrenal activity in captive and wild Canada lynx (Lynx canadensis)

  • Original Paper
  • Published:
Journal of Comparative Physiology B Aims and scope Submit manuscript

Abstract

Stress and animal well-being are often assessed using concentrations of glucocorticoids (GCs), a product of the hypothalamic–pituitary–adrenal axis. However, GC concentrations can also be modulated by predictable events, such as changes in season or life history stage. Understanding normative patterns of adrenal activity is critical for making valid conclusions about changes in GC concentrations. In this study, we validated an assay for monitoring fecal glucocorticoid metabolites (FGM) in Canada lynx. We then used this technique to assess patterns of adrenal activity in Canada lynx across several contexts. Our results show that captive lynx have higher FGM concentrations than wild lynx, which may be related to differences in stress levels, metabolic rate, diet, or body condition. We also found that FGM concentrations are correlated with reproductive status in females, but not in males. For males, seasonal increases in FGM expression coincide with the onset of the breeding season, whereas in females, FGM increase toward the end of the breeding season. This information provides a valuable foundation for making inferences about normative versus stress-induced changes in adrenal activity in Canada lynx.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anagnostis P, Athyros VG, Tziomalos K, Karagiannis A, Mikhailidis DP (2009) The pathogenetic role of cortisol in the metabolic syndrome: a hypothesis. J Clin Endocrinol Metab 94:2692–2701

    Article  PubMed  CAS  Google Scholar 

  • Atkinson HC, Waddell BJ (1997) Circadian variation in basal plasma corticosterone and adrenocorticotropin in the rat: sexual dimorphism and changes across the estrous cycle. Endocrinology 138:3842–3848

    Article  PubMed  CAS  Google Scholar 

  • Boonstra R (2004) Coping with changing northern environments: the role of the stress axis in birds and mammals. Integr Comp Biol 44:95–108

    Article  PubMed  Google Scholar 

  • Brann D, Mahesh V (1991) Role of corticosteroids in female reproduction. FASEB J 5:2691–2698

    PubMed  CAS  Google Scholar 

  • Cavigelli SA (1999) Behavioural patterns associated with faecal cortisol levels in free-ranging female ring-tailed femurs, Lemur catta. Anim Behav 57:935–944

    Article  PubMed  Google Scholar 

  • Cavigelli SA, Monfort SL, Whitney TK, Mechref YS, Novotny M, McClintock MK (2005) Frequent serial fecal corticoid measures from rats reflect circadian and ovarian corticosterone rhythms. J Endocrinol 184:153–163

    Article  PubMed  CAS  Google Scholar 

  • Chrousos GP, Torpy DJ, Gold PW (1998) Interactions between the hypothalamic–pituitary–adrenal axis and the female reproductive system: clinical implications. Ann Intern Med 129:229–240

    PubMed  CAS  Google Scholar 

  • Cyr NE, Romero LM (2008) Fecal glucocorticoid metabolites of experimentally stressed captive and free-living starlings: implications for conservation research. Gen Comp Endocrinol 158:20–28

    Article  PubMed  CAS  Google Scholar 

  • Dantzer B, McAdam AG, Palme R, Fletcher QE, Boutin S, Humphries MM, Boonstra R (2010) Fecal cortisol metabolite levels in free-ranging North American red squirrels: assay validation and the effects of reproductive condition. Gen Comp Endocrinol 167:279–286

    Article  PubMed  CAS  Google Scholar 

  • Dehnhard M, Fanson K, Frank A, Naidenko SV, Vargas A, Jewgenow K (2010) Comparative metabolism of gestagens and estrogens in the four lynx species, the Eurasian (Lynx lynx), the Iberian (L. pardinus), the Canada lynx (L. canadensis) and the bobcat (L. rufus). Gen Comp Endocrinol 167:287–296

    Article  PubMed  CAS  Google Scholar 

  • Fanson KV (2009) Stress and reproductive physiology in Canada lynx (Lynx canadensis): implications for in situ and ex-situ conservation. PhD Dissertation, Purdue University, West Lafayette, Indiana

  • Fanson KV, Wielebnowski NC, Shenk TM, Jakubas WJ, Squires JR, Lucas JR (2010a) Patterns of testicular activity in captive and wild Canada lynx (Lynx canadensis). Gen Comp Endocrinol 169:210–216

    Article  PubMed  CAS  Google Scholar 

  • Fanson KV, Wielebnowski NC, Shenk TM, Vashon JH, Squires JR, Lucas JR (2010b) Patterns of ovarian and luteal activity in captive and wild Canada lynx (Lynx canadensis). Gen Comp Endocrinol 169:217–224

    Article  PubMed  CAS  Google Scholar 

  • Frigerio D, Dittami J, Möstl E, Kotrschal K (2004) Excreted corticosterone metabolites co-vary with ambient temperature and air pressure in male Greylag geese (Anser anser). Gen Comp Endocrinol 137:29–36

    Article  PubMed  CAS  Google Scholar 

  • Goymann W (2005) Noninvasive monitoring of hormones in bird droppings—physiological validation, sampling, extraction, sex differences, and the influence of diet on hormone metabolite levels. Ann N Y Acad Sci 1046:35–53

    Article  PubMed  CAS  Google Scholar 

  • Hajamor S, Despres JP, Couillard C, Lemieux S, Tremblay A, Prud’homme D, Tchernof A (2003) Relationship between sex hormone-binding globulin levels and features of the metabolic syndrome. Metab Clin Exp 52:724–730

    Article  PubMed  CAS  Google Scholar 

  • Lordelo RA, Mancini MC, Cercato C, Halpern A (2007) Hormonal axes in obesity: cause or effect? Arq Bras Endocrinol Metab 51:34–41

    Article  Google Scholar 

  • Millspaugh JJ, Washburn BE (2004) Use of fecal glucocorticoid metabolite measures in conservation biology research: considerations for application and interpretation. Gen Comp Endocrinol 138:189–199

    Article  PubMed  CAS  Google Scholar 

  • Möstl E, Palme R (2002) Hormones as indicators of stress. Domest Anim Endocrinol 23:67–74

    Article  PubMed  Google Scholar 

  • Möstl E, Maggs JL, Schrotter G, Besenfelder U, Palme R (2002) Measurement of cortisol metabolites in faeces of ruminants. Vet Res Commun 26:127–139

    Article  PubMed  Google Scholar 

  • Narayan E, Molinia F, Christi K, Morley C, Cockrem J (2010) Urinary corticosterone metabolite responses to capture, and annual patterns of urinary corticosterone in wild and captive endangered Fijian ground frogs (Platymantis vitiana). Aust J Zool 58:189–197

    Article  Google Scholar 

  • Palme R (2005) Measuring fecal steroids—guidelines for practical application. Ann N Y Acad Sci 1046:75–80

    Article  PubMed  CAS  Google Scholar 

  • Palme R, Rettenbacher S, Touma C, El-Bahr SM, Möstl E (2005) Stress hormones in mammals and birds—comparative aspects regarding metabolism, excretion, and noninvasive measurement in fecal samples. Ann N Y Acad Sci 1046:162–171

    Article  Google Scholar 

  • Rangel-Negrin A, Alfaro JL, Valdez RA, Romano MC, Serio-Silva JC (2009) Stress in Yucatan spider monkeys: effects of environmental conditions on fecal cortisol levels in wild and captive populations. Anim Conserv 12:496–502

    Article  Google Scholar 

  • Romero LM (2002) Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocrinol 128:1–24

    Article  PubMed  CAS  Google Scholar 

  • Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255

    Article  PubMed  Google Scholar 

  • Romero LM, Dickens MJ, Cyr NE (2009) The reactive scope model—a new model integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389

    Article  PubMed  Google Scholar 

  • Sapolsky RM (2002) Endocrinology of the stress-response. In: Becker JB, Breedlove SM (eds) Behavioral endocrinology. MIT Press, Cambridge, pp 409–450

    Google Scholar 

  • Seale JV, Wood SA, Atkinson HC, Bate E, Lightman SL, Ingram CD, Jessop DS, Harbuz MS (2004) Gonadectomy reverses the sexually diergic patterns of circadian and stress-induced hypothalamic–pituitary–adrenal axis activity in male and female rats. J Neuroendocrinol 16:516–524

    Google Scholar 

  • Sheriff M, Dantzer B, Delehanty B, Palme R, Boonstra R (2011) Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166:593–605

    Google Scholar 

  • St. Aubin DJ, Ridgway SH, Wells RS, Rhinehart H (1996) Dolphin thyroid and adrenal hormones: circulating levels in wild and semidomesticated Tursiops truncatus, and influence of sex, age, and season. Mar Mamm Sci 12:1–13

    Article  Google Scholar 

  • Stead-Richardson E, Bradshaw D, Friend T, Fletcher T (2010) Monitoring reproduction in the critically endangered marsupial, Gilbert’s potoroo (Potorous gilbertii): preliminary analysis of faecal oestradiol-17 beta, cortisol and progestagens. Gen Comp Endocrinol 165:155–162

    Article  PubMed  CAS  Google Scholar 

  • Terio KA, Marker L, Munson L (2004) Evidence for chronic stress in captive but not free-ranging cheetahs (Acinonyx jubatus) based on adrenal morphology and function. J Wildl Dis 40:259–266

    PubMed  CAS  Google Scholar 

  • Touma C, Palme R (2005) Measuring fecal glucocorticoid metabolites in mammals and birds: the importance of validation. Ann N Y Acad Sci 1046:54–74

    Article  PubMed  CAS  Google Scholar 

  • von der Ohe CG, Servheen C (2002) Measuring stress in mammals using fecal glucocorticoids: opportunities and challenges. Wildl Soc Bull 30:1215–1225

    Google Scholar 

  • Weingrill T, Gray DA, Barrett L, Henzi SP (2004) Fecal cortisol levels in free-ranging female chacma baboons: relationship to dominance, reproductive state and environmental factors. Horm Behav 45:259–269

    Article  PubMed  CAS  Google Scholar 

  • Wielebnowski N (2003) Stress and distress: evaluating their impact for the well-being of zoo animals. J Am Vet Med Assoc 223:973–977

    Article  PubMed  Google Scholar 

  • Wielebnowski N, Watters J (2007) Applying fecal endocrine monitoring to conservation and behavior studies of wild mammals: important considerations and preliminary tests. Isr J Ecol Evolution 53:439–460

    Article  Google Scholar 

  • Wielebnowski NC, Fletchall N, Carlstead K, Busso JM, Brown JL (2002) Noninvasive assessment of adrenal activity associated with husbandry and behavioral factors in the North American clouded leopard population. Zoo Biol 21:77–98

    Article  Google Scholar 

  • Woodruff JA, Lacey EA, Bentley G (2010) Contrasting fecal corticosterone metabolite levels in captive and free-living colonial Tuco-Tucos (Ctenomys sociabilis). J Exp Zool Part A Ecol Genet Physiol 313A:498–507

    Article  CAS  Google Scholar 

  • Yildiz B, Azziz R (2007) The adrenal and polycystic ovary syndrome. Rev Endocr Metab Disord 8:331–342

    Article  PubMed  CAS  Google Scholar 

  • Young KM, Walker SL, Lanthier C, Waddell WT, Monfort SL, Brown JL (2004) Noninvasive monitoring of adrenocortical activity in carnivores by fecal glucocorticold analyses. Gen Comp Endocrinol 137:148–165

    Article  PubMed  CAS  Google Scholar 

  • Ziegler TE, Scheffler G, Snowdon CT (1995) The relationship of cortisol-levels to social-environment and reproductive functioning in female cotton-top tamarins, Saguinus oedipus. Horm Behav 29:407–424

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We greatly appreciate the hard work of everyone involved in collecting fecal samples and the assistance provided by participating institutions (Captive: Alaska Zoo, Assiniboine Park Zoo, Brec’s Baton Rouge Zoo, Buttonwood Park Zoo, Cincinnati Zoo & Botanical Garden, Connecticut’s Beardsley Zoo, Dirt Willy’s Game Bird Farm, Feline Conservation Center, Minnesota Zoological Gardens, N.O.A.H. Feline Refuge Center, Pueblo Zoo, Philadelphia Zoo, Salmonier Nature Park, Scovill Zoo, The Wildcat Sanctuary, Toronto Zoo, Utah’s Hogle Zoo, Walk on the Wildside Feline Refuge, Wild Trax Feline Refuge, Wildlife Science Center, Zoo America, and Zoo Sauvage de St. Félicien; Wild: Colorado Division of Wildlife, Maine Department of Inland Fisheries and Wildlife, USFS Rocky Mountain Research Station). Special thanks to Feline Conservation Center, Philadelphia Zoo, Scovill Zoo, and Wildlife Science Center for their participation in the ACTH challenge. Thanks to Astrid Bellem and Jocelyn Bryant for technical support. Funding for this project was provided by the Chicago Zoological Society/Chicago Board of Trade, Purdue University, and PEO International.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kerry V. Fanson.

Additional information

Communicated by I.D. Hume.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fanson, K.V., Wielebnowski, N.C., Shenk, T.M. et al. Comparative patterns of adrenal activity in captive and wild Canada lynx (Lynx canadensis). J Comp Physiol B 182, 157–165 (2012). https://doi.org/10.1007/s00360-011-0597-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00360-011-0597-8

Keywords

Navigation