Skip to main content

Advertisement

Log in

Role of placentally produced inflammatory and regulatory cytokines in pregnancy and the etiology of preeclampsia

  • Review
  • Published:
Seminars in Immunopathology Aims and scope Submit manuscript

Abstract

Human pregnancy is a metabolic and immune challenge for the mother who has to accommodate in her womb a semi-allogeneic fetus whose energy needs increase tremendously with gestation. Recent compelling research has suggested that proper inflammatory changes and oxidative balance are a requisite for successful pregnancy. The placenta is an integral component of this inflammatory response as it actively produces a variety of cytokines and immunomodulatory hormones. In preeclampsia, a life-threatening disorder of pregnancy that is characterized by widespread damage and dysfunction of the maternal endothelium, placental oxidative stress and aberrant cytokine expression induces an exaggerated maternal systemic inflammatory response to pregnancy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Benirschke K, Kaufmann P (2000) Pathology of the human placenta, 4th edn. Springer, Berlin Heidelberg New York

    Google Scholar 

  2. Medawar PB (1961) Immunological tolerance. Nature 189:14–17

    PubMed  CAS  Google Scholar 

  3. Redman CW, McMichael AJ, Stirrat GM, Sunderland CA, Ting A (1984) Class 1 major histocompatibility complex antigens on human extra-villous trophoblast. Immunology 52:457–468

    PubMed  CAS  Google Scholar 

  4. Kovats S, Main EK, Librach C, Stubblebine M, Fisher SJ, DeMars R (1990) A class I antigen, HLA-G, expressed in human trophoblasts. Science 248:220–223

    PubMed  CAS  Google Scholar 

  5. Ishitani A, Sageshima N, Lee N, Dorofeeva N, Hatake K, Marquardt H, Geraghty DE (2003) Protein expression and peptide binding suggest unique and interacting functional roles for HLA-E, F, and G in maternal–placental immune recognition. J Immunol 171:1376–1384

    PubMed  CAS  Google Scholar 

  6. Hunt JS, Petroff MG, McIntire RH, Ober C (2005) HLA-G and immune tolerance in pregnancy. FASEB J 19:681–693

    PubMed  CAS  Google Scholar 

  7. Ishitani A, Sageshima N, Hatake K (2006) The involvement of HLA-E and -F in pregnancy. J Reprod Immunol 69:101–113

    PubMed  CAS  Google Scholar 

  8. Bulmer JN, Lash GE (2005) Human uterine natural killer cells: a reappraisal. Mol Immunol 42:511–521

    PubMed  CAS  Google Scholar 

  9. Saito S, Nishikawa K, Morii T, Enomoto M, Narita N, Motoyoshi K, Ichijo M (1993) Cytokine production by CD16–CD56 bright natural killer cells in the human early pregnancy decidua. Int Immunol 5:559–563

    PubMed  CAS  Google Scholar 

  10. Hanna J, Goldman-Wohl D, Hamani Y, Avraham I, Greenfield C, Natanson-Yaron S, Prus D, Cohen-Daniel L, Arnon TI, Manaster I, Gazit R, Yutkin V, Benharroch D, Porgador A, Keshet E, Yagel S, Mandelboim O (2006) Decidual NK cells regulate key developmental processes at the human fetal–maternal interface. Nat Med 12:1065–1074

    PubMed  CAS  Google Scholar 

  11. Tabiasco J, Rabot M, Aguerre-Girr M, El Costa H, Berrebi A, Parant O, Laskarin G, Juretic K, Bensussan A, Rukavina D, Le Bouteiller P (2006) Human decidual NK cells: unique phenotype and functional properties—a review. Placenta 27(Suppl A):S34–S39

    PubMed  Google Scholar 

  12. van der MA, Lukassen HG, van Lierop MJ, Wijnands F, Mosselman S, Braat DD, Joosten I (2004) Membrane-bound HLA-G activates proliferation and interferon-gamma production by uterine natural killer cells. Mol Hum Reprod 10:189–195

    Google Scholar 

  13. Hiby SE, Walker JJ, O’Shaughnessy KM, Redman CW, Carrington M, Trowsdale J, Moffett A (2004) Combinations of maternal KIR and fetal HLA-C genes influence the risk of preeclampsia and reproductive success. J Exp Med 200:957–965

    PubMed  CAS  Google Scholar 

  14. Wegmann TG, Lin H, Guilbert L, Mosmann TR (1993) Bidirectional cytokine interactions in the maternal–fetal relationship: is successful pregnancy a TH2 phenomenon? Immunol Today 14:353–356

    PubMed  CAS  Google Scholar 

  15. Cadet P, Rady PL, Tyring SK, Yandell RB, Hughes TK (1995) Interleukin-10 messenger ribonucleic acid in human placenta: implications of a role for interleukin-10 in fetal allograft protection. Am J Obstet Gynecol 173:25–29

    PubMed  CAS  Google Scholar 

  16. Roth I, Corry DB, Locksley RM, Abrams JS, Litton MJ, Fisher SJ (1996) Human placental cytotrophoblasts produce the immunosuppressive cytokine interleukin 10. J Exp Med 184:539–548

    PubMed  CAS  Google Scholar 

  17. Moraes-Pinto MI, Vince GS, Flanagan BF, Hart CA, Johnson PM (1997) Localization of IL-4 and IL-4 receptors in the human term placenta, decidua and amniochorionic membranes. Immunology 90:87–94

    PubMed  Google Scholar 

  18. Bennett WA, Lagoo-Deenadayalan S, Stopple JA, Barber WH, Hale E, Brackin MN, Cowan BD (1998) Cytokine expression by first-trimester human chorionic villi. Am J Reprod Immunol 40:309–318

    PubMed  CAS  Google Scholar 

  19. Sacks GP, Clover LM, Bainbridge DR, Redman CW, Sargent IL (2001) Flow cytometric measurement of intracellular Th1 and Th2 cytokine production by human villous and extravillous cytotrophoblast. Placenta 22:550–559

    PubMed  CAS  Google Scholar 

  20. Dungy LJ, Siddiqi TA, Khan S (1991) Transforming growth factor-beta 1 expression during placental development. Am J Obstet Gynecol 165:853–857

    PubMed  CAS  Google Scholar 

  21. Graham CH, Lysiak JJ, McCrae KR, Lala PK (1992) Localization of transforming growth factor-beta at the human fetal–maternal interface: role in trophoblast growth and differentiation. Biol Reprod 46:561–572

    PubMed  CAS  Google Scholar 

  22. Ando N, Hirahara F, Fukushima J, Kawamoto S, Okuda K, Funabashi T, Gorai I, Minaguchi H (1998) Differential gene expression of TGF-beta isoforms and TGF-beta receptors during the first trimester of pregnancy at the human maternal–fetal interface. Am J Reprod Immunol 40:48–56

    PubMed  CAS  Google Scholar 

  23. Paulesu L, Romagnoli R, Cintorino M, Ricci MG, Garotta G (1994) First trimester human trophoblast expresses both interferon-gamma and interferon-gamma-receptor. J Reprod Immunol 27:37–48

    PubMed  CAS  Google Scholar 

  24. Hanna N, Hanna I, Hleb M, Wagner E, Dougherty J, Balkundi D, Padbury J, Sharma S (2000) Gestational age-dependent expression of IL-10 and its receptor in human placental tissues and isolated cytotrophoblasts. J Immunol 164:5721–5728

    PubMed  CAS  Google Scholar 

  25. Marzi M, Vigano A, Trabattoni D, Villa ML, Salvaggio A, Clerici E, Clerici M (1996) Characterization of type 1 and type 2 cytokine production profile in physiologic and pathologic human pregnancy. Clin Exp Immunol 106:127–133

    PubMed  CAS  Google Scholar 

  26. Piccinni MP, Beloni L, Livi C, Maggi E, Scarselli G, Romagnani S (1998) Defective production of both leukemia inhibitory factor and type 2 T-helper cytokines by decidual T cells in unexplained recurrent abortions. Nat Med 4:1020–1024

    PubMed  CAS  Google Scholar 

  27. Hill JA, Polgar K, Anderson DJ (1995) T-helper 1-type immunity to trophoblast in women with recurrent spontaneous abortion. JAMA 273:1933–1936

    PubMed  CAS  Google Scholar 

  28. Raghupathy R (1997) Th1-type immunity is incompatible with successful pregnancy. Immunol Today 18:478–482

    PubMed  CAS  Google Scholar 

  29. Chaouat G, Ledee-Bataille N, Dubanchet S, Zourbas S, Sandra O, Martal J (2004) TH1/TH2 paradigm in pregnancy: paradigm lost? Cytokines in pregnancy/early abortion: reexamining the TH1/TH2 paradigm. Int Arch Allergy Immunol 134:93–119

    PubMed  Google Scholar 

  30. Sacks GP, Studena K, Sargent K, Redman CW (1998) Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am J Obstet Gynecol 179:80–86

    PubMed  CAS  Google Scholar 

  31. Naccasha N, Gervasi MT, Chaiworapongsa T, Berman S, Yoon BH, Maymon E, Romero R (2001) Phenotypic and metabolic characteristics of monocytes and granulocytes in normal pregnancy and maternal infection. Am J Obstet Gynecol 185:1118–1123

    PubMed  CAS  Google Scholar 

  32. Sacks G, Sargent I, Redman C (1999) An innate view of human pregnancy. Immunol Today 20:114–118

    PubMed  CAS  Google Scholar 

  33. Kupferminc MJ, Peaceman AM, Wigton TR, Tamura RK, Rehnberg KA, Socol ML (1994) Immunoreactive tumor necrosis factor-alpha is elevated in maternal plasma but undetected in amniotic fluid in the second trimester. Am J Obstet Gynecol 171:976–979

    PubMed  CAS  Google Scholar 

  34. Austgulen R, Lien E, Liabakk NB, Jacobsen G, Arntzen KJ (1994) Increased levels of cytokines and cytokine activity modifiers in normal pregnancy. Eur J Obstet Gynecol Reprod Biol 57:149–155

    PubMed  CAS  Google Scholar 

  35. Sacks GP, Redman CW, Sargent IL (2003) Monocytes are primed to produce the Th1 type cytokine IL-12 in normal human pregnancy: an intracellular flow cytometric analysis of peripheral blood mononuclear cells. Clin Exp Immunol 131:490–497

    PubMed  CAS  Google Scholar 

  36. Kameda T, Matsuzaki N, Sawai K, Okada T, Saji F, Matsuda T, Hirano T, Kishimoto T, Tanizawa O (1990) Production of interleukin-6 by normal human trophoblast. Placenta 11:205–213

    PubMed  CAS  Google Scholar 

  37. Chen HL, Yang YP, Hu XL, Yelavarthi KK, Fishback JL, Hunt JS (1991) Tumor necrosis factor alpha mRNA and protein are present in human placental and uterine cells at early and late stages of gestation. Am J Pathol 139:327–335

    PubMed  CAS  Google Scholar 

  38. Paulesu L, King A, Loke YW, Cintorino M, Bellizzi E, Boraschi D (1991) Immunohistochemical localization of IL-1 alpha and IL-1 beta in normal human placenta. Lymphokine Cytokine Res 10:443–448

    PubMed  CAS  Google Scholar 

  39. Hu XL, Yang Y, Hunt JS (1992) Differential distribution of interleukin-1 alpha and interleukin-1 beta proteins in human placentas. J Reprod Immunol 22:257–268

    PubMed  CAS  Google Scholar 

  40. Haynes MK, Jackson LG, Tuan RS, Shepley KJ, Smith JB (1993) Cytokine production in first trimester chorionic villi: detection of mRNAs and protein products in situ. Cell Immunol 151:300–308

    PubMed  CAS  Google Scholar 

  41. King A, Jokhi PP, Smith SK, Sharkey AM, Loke YW (1995) Screening for cytokine mRNA in human villous and extravillous trophoblasts using the reverse-transcriptase polymerase chain reaction (RT-PCR). Cytokine 7:364–371

    PubMed  CAS  Google Scholar 

  42. Kirwan JP, Hauguel-de Mouzon S, Lepercq J, Challier JC, Huston-Presley L, Friedman JE, Kalhan SC, Catalano PM (2002) TNF-alpha is a predictor of insulin resistance in human pregnancy. Diabetes 51:2207–2213

    PubMed  CAS  Google Scholar 

  43. Borzychowski AM, Sargent IL, Redman CW (2006) Inflammation and pre-eclampsia. Semin Fetal Neonatal Med 11:309–316

    PubMed  CAS  Google Scholar 

  44. Sibai B, Dekker G, Kupferminc M (2005) Pre-eclampsia. Lancet 365:785–799

    PubMed  Google Scholar 

  45. Redman CW, Sargent IL (2005) Latest advances in understanding preeclampsia. Science 308:1592–1594

    PubMed  CAS  Google Scholar 

  46. von Dadelszen P, Magee LA, Roberts JM (2003) Subclassification of preeclampsia. Hypertens Pregnancy 22:143–148

    Google Scholar 

  47. Duckitt K, Harrington D (2005) Risk factors for pre-eclampsia at antenatal booking: systematic review of controlled studies. BMJ 330:565

    PubMed  Google Scholar 

  48. van Dijk M, Mulders J, Poutsma A, Konst AA, Lachmeijer AM, Dekker GA, Blankenstein MA, Oudejans CB (2005) Maternal segregation of the Dutch preeclampsia locus at 10q22 with a new member of the winged helix gene family. Nat Genet 37:514–519

    PubMed  Google Scholar 

  49. Laivuori H (2007) Genetic aspects of preeclampsia. Front Biosci 12:2372–2382

    PubMed  CAS  Google Scholar 

  50. Hahn S, Gupta AK, Troeger C, Rusterholz C, Holzgreve W (2006) Disturbances in placental immunology: ready for therapeutic interventions? Springer Semin Immunopathol 27:477–493

    PubMed  CAS  Google Scholar 

  51. Sargent IL, Borzychowski AM, Redman CW (2006) Immunoregulation in normal pregnancy and pre-eclampsia: an overview. Reprod Biomed Online 13:680–686

    Article  PubMed  CAS  Google Scholar 

  52. Roberts JM, Taylor RN, Musci TJ, Rodgers GM, Hubel CA, McLaughlin MK (1989) Preeclampsia: an endothelial cell disorder. Am J Obstet Gynecol 161:1200–1204

    PubMed  CAS  Google Scholar 

  53. Redman CW, Sargent IL (2003) Pre-eclampsia, the placenta and the maternal systemic inflammatory response—a review. Placenta 24(Suppl A):S21–S27

    PubMed  Google Scholar 

  54. Roberts JM, Redman CW (1993) Pre-eclampsia: more than pregnancy-induced hypertension. Lancet 341:1447–1451

    PubMed  CAS  Google Scholar 

  55. Hahn S, Holzgreve W (2002) Fetal cells and cell-free fetal DNA in maternal blood: new insights into pre-eclampsia. Hum Reprod Update 8:501–508

    PubMed  CAS  Google Scholar 

  56. Goldman-Wohl DS, Ariel I, Greenfield C, Hochner-Celnikier D, Cross J, Fisher S, Yagel S (2000) Lack of human leukocyte antigen-G expression in extravillous trophoblasts is associated with pre-eclampsia. Mol Hum Reprod 6:88–95

    PubMed  CAS  Google Scholar 

  57. Yie SM, Li LH, Li YM, Librach C (2004) HLA-G protein concentrations in maternal serum and placental tissue are decreased in preeclampsia. Am J Obstet Gynecol 191:525–529

    PubMed  CAS  Google Scholar 

  58. Le Bouteiller P, Pizzato N, Barakonyi A, Solier C (2003) HLA-G, pre-eclampsia, immunity and vascular events. J Reprod Immunol 59:219–234

    PubMed  Google Scholar 

  59. Parham P (2004) NK cells and trophoblasts: partners in pregnancy. J Exp Med 200:951–955

    PubMed  CAS  Google Scholar 

  60. Reister F, Frank HG, Heyl W, Kosanke G, Huppertz B, Schroder W, Kaufmann P, Rath W (1999) The distribution of macrophages in spiral arteries of the placental bed in pre-eclampsia differs from that in healthy patients. Placenta 20:229–233

    PubMed  CAS  Google Scholar 

  61. Redline RW (2001) Macrophages in the basal plate of pre-eclamptic placentae. Placenta 22:890–893

    PubMed  CAS  Google Scholar 

  62. Burk MR, Troeger C, Brinkhaus R, Holzgreve W, Hahn S (2001) Severely reduced presence of tissue macrophages in the basal plate of pre-eclamptic placentae. Placenta 22:309–316

    PubMed  CAS  Google Scholar 

  63. Reister F, Frank HG, Kingdom JC, Heyl W, Kaufmann P, Rath W, Huppertz B (2001) Macrophage-induced apoptosis limits endovascular trophoblast invasion in the uterine wall of preeclamptic women. Lab Invest 81:1143–1152

    PubMed  CAS  Google Scholar 

  64. DiFederico E, Genbacev O, Fisher SJ (1999) Preeclampsia is associated with widespread apoptosis of placental cytotrophoblasts within the uterine wall. Am J Pathol 155:293–301

    PubMed  CAS  Google Scholar 

  65. Robertson WB, Brosens I, Dixon G (1976) Maternal uterine vascular lesions in the hypertensive complications of pregnancy. Perspect Nephrol Hypertens 5:115–127

    PubMed  CAS  Google Scholar 

  66. Graham CH, Burton GJ (2004) Oxygen and trophoblast behaviour—a workshop report. Placenta 25(Suppl A):S90–S92

    PubMed  Google Scholar 

  67. Burton GJ, Caniggia I (2001) Hypoxia: implications for implantation to delivery—a workshop report. Placenta 22(Suppl A):S63–S65

    PubMed  Google Scholar 

  68. Soleymanlou N, Jurisica I, Nevo O, Ietta F, Zhang X, Zamudio S, Post M, Caniggia I (2005) Molecular evidence of placental hypoxia in preeclampsia. J Clin Endocrinol Metab 90:4299–4308

    PubMed  CAS  Google Scholar 

  69. Hung TH, Skepper JN, Burton GJ (2001) In vitro ischemia–reperfusion injury in term human placenta as a model for oxidative stress in pathological pregnancies. Am J Pathol 159:1031–1043

    PubMed  CAS  Google Scholar 

  70. Sikkema JM, van Rijn BB, Franx A, Bruinse HW, de Roos R, Stroes ES, van Faassen EE (2001) Placenta l superoxide is increased in pre-eclampsia. Placenta 22:304–308

    PubMed  CAS  Google Scholar 

  71. Many A, Hubel CA, Fisher SJ, Roberts JM, Zhou Y (2000) Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am J Pathol 156:321–331

    PubMed  CAS  Google Scholar 

  72. Wang Y, Walsh SW (2001) Increased superoxide generation is associated with decreased superoxide dismutase activity and mRNA expression in placental trophoblast cells in pre-eclampsia. Placenta 22:206–212

    PubMed  CAS  Google Scholar 

  73. Vanderlelie J, Venardos K, Clifton VL, Gude NM, Clarke FM, Perkins AV (2005) Increased biological oxidation and reduced anti-oxidant enzyme activity in pre-eclamptic placentae. Placenta 26:53–58

    PubMed  CAS  Google Scholar 

  74. Burton GJ, Jauniaux E (2004) Placental oxidative stress: from miscarriage to preeclampsia. J Soc Gynecol Investig 11:342–352

    PubMed  CAS  Google Scholar 

  75. Vaughan JE, Walsh SW (2002) Oxidative stress reproduces placental abnormalities of preeclampsia. Hypertens Pregnancy 21:205–223

    PubMed  CAS  Google Scholar 

  76. Leung DN, Smith SC, To KF, Sahota DS, Baker PN (2001) Increased placental apoptosis in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 184:1249–1250

    PubMed  CAS  Google Scholar 

  77. Ishihara N, Matsuo H, Murakoshi H, Laoag-Fernandez JB, Samoto T, Maruo T (2002) Increased apoptosis in the syncytiotrophoblast in human term placentas complicated by either preeclampsia or intrauterine growth retardation. Am J Obstet Gynecol 186:158–166

    PubMed  Google Scholar 

  78. Levy R, Smith SD, Chandler K, Sadovsky Y, Nelson DM (2000) Apoptosis in human cultured trophoblasts is enhanced by hypoxia and diminished by epidermal growth factor. Am J Physiol Cell Physiol 278:C982–C988

    PubMed  CAS  Google Scholar 

  79. Hung TH, Skepper JN, Charnock-Jones DS, Burton GJ (2002) Hypoxia–reoxygenation: a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ Res 90:1274–1281

    PubMed  CAS  Google Scholar 

  80. Huppertz B, Kingdom J, Caniggia I, Desoye G, Black S, Korr H, Kaufmann P (2003) Hypoxia favours necrotic versus apoptotic shedding of placental syncytiotrophoblast into the maternal circulation. Placenta 24:181–190

    PubMed  CAS  Google Scholar 

  81. Redman CW, Sargent IL (2000) Placental debris, oxidative stress and pre-eclampsia. Placenta 21:597–602

    PubMed  CAS  Google Scholar 

  82. Lo YM, Leung TN, Tein MS, Sargent IL, Zhang J, Lau TK, Haines CJ, Redman CW (1999) Quantitative abnormalities of fetal DNA in maternal serum in preeclampsia. Clin Chem 45:184–188

    PubMed  CAS  Google Scholar 

  83. Zhong XY, Laivuori H, Livingston JC, Ylikorkala O, Sibai BM, Holzgreve W, Hahn S (2001) Elevation of both maternal and fetal extracellular circulating deoxyribonucleic acid concentrations in the plasma of pregnant women with preeclampsia. Am J Obstet Gynecol 184:414–419

    PubMed  CAS  Google Scholar 

  84. Knight M, Redman CW, Linton EA, Sargent IL (1998) Shedding of syncytiotrophoblast microvilli into the maternal circulation in pre-eclamptic pregnancies. Br J Obstet Gynaecol 105:632–640

    PubMed  CAS  Google Scholar 

  85. Goswami D, Tannetta DS, Magee LA, Fuchisawa A, Redman CW, Sargent IL, von Dadelszen P (2006) Excess syncytiotrophoblast microparticle shedding is a feature of early-onset pre-eclampsia, but not normotensive intrauterine growth restriction. Placenta 27:56–61

    PubMed  CAS  Google Scholar 

  86. Saito S, Umekage H, Sakamoto Y, Sakai M, Tanebe K, Sasaki Y, Morikawa H (1999) Increased T-helper-1-type immunity and decreased T-helper-2-type immunity in patients with preeclampsia. Am J Reprod Immunol 41:297–306

    PubMed  CAS  Google Scholar 

  87. Darmochwal-Kolarz D, Leszczynska-Gorzelak B, Rolinski J, Oleszczuk J (1999) T helper 1- and T helper 2-type cytokine imbalance in pregnant women with pre-eclampsia. Eur J Obstet Gynecol Reprod Biol 86:165–170

    PubMed  CAS  Google Scholar 

  88. Rein DT, Schondorf T, Gohring UJ, Kurbacher CM, Pinto I, Breidenbach M, Mallmann P, Kolhagen H, Engel H (2002) Cytokine expression in peripheral blood lymphocytes indicates a switch to T(HELPER) cells in patients with preeclampsia. J Reprod Immunol 54:133–142

    PubMed  CAS  Google Scholar 

  89. Sakai M, Tsuda H, Tanebe K, Sasaki Y, Saito S (2002) Interleukin-12 secretion by peripheral blood mononuclear cells is decreased in normal pregnant subjects and increased in preeclamptic patients. Am J Reprod Immunol 47:91–97

    PubMed  Google Scholar 

  90. Wilczynski JR, Tchorzewski H, Glowacka E, Banasik M, Lewkowicz P, Szpakowski M, Zeman K, Wilczynski J (2002) Cytokine secretion by decidual lymphocytes in transient hypertension of pregnancy and pre-eclampsia. Mediators Inflamm 11:105–111

    PubMed  CAS  Google Scholar 

  91. Orange S, Horvath J, Hennessy A (2003) Preeclampsia is associated with a reduced interleukin-10 production from peripheral blood mononuclear cells. Hypertens Pregnancy 22:1–8

    PubMed  CAS  Google Scholar 

  92. Jonsson Y, Matthiesen L, Berg G, Ernerudh J, Nieminen K, Ekerfelt C (2005) Indications of an altered immune balance in preeclampsia: a decrease in in vitro secretion of IL-5 and IL-10 from blood mononuclear cells and in blood basophil counts compared with normal pregnancy. J Reprod Immunol 66:69–84

    PubMed  CAS  Google Scholar 

  93. Holthe MR, Staff AC, Berge LN, Lyberg T (2004) Leukocyte adhesion molecules and reactive oxygen species in preeclampsia. Obstet Gynecol 103:913–922

    PubMed  CAS  Google Scholar 

  94. Luppi P, Deloia JA (2006) Monocytes of preeclamptic women spontaneously synthesize pro-inflammatory cytokines. Clin Immunol 118:268–275

    PubMed  CAS  Google Scholar 

  95. Kupferminc MJ, Peaceman AM, Wigton TR, Rehnberg KA, Socol ML (1994) Tumor necrosis factor-alpha is elevated in plasma and amniotic fluid of patients with severe preeclampsia. Am J Obstet Gynecol 170:1752–1757

    PubMed  CAS  Google Scholar 

  96. Greer IA, Lyall F, Perera T, Boswell F, Macara LM (1994) Increased concentrations of cytokines interleukin-6 and interleukin-1 receptor antagonist in plasma of women with preeclampsia: a mechanism for endothelial dysfunction? Obstet Gynecol 84:937–940

    PubMed  CAS  Google Scholar 

  97. Vince GS, Starkey PM, Austgulen R, Kwiatkowski D, Redman CW (1995) Interleukin-6, tumour necrosis factor and soluble tumour necrosis factor receptors in women with pre-eclampsia. Br J Obstet Gynaecol 102:20–25

    PubMed  CAS  Google Scholar 

  98. Conrad KP, Miles TM, Benyo DF (1998) Circulating levels of immunoreactive cytokines in women with preeclampsia. Am J Reprod Immunol 40:102–111

    PubMed  CAS  Google Scholar 

  99. Stallmach T, Hebisch G, Joller H, Kolditz P, Engelmann M (1995) Expression pattern of cytokines in the different compartments of the feto–maternal unit under various conditions. Reprod Fertil Dev 7:1573–1580

    PubMed  CAS  Google Scholar 

  100. Kupferminc MJ, Peaceman AM, Aderka D, Wallach D, Socol ML (1996) Soluble tumor necrosis factor receptors and interleukin-6 levels in patients with severe preeclampsia. Obstet Gynecol 88:420–427

    PubMed  CAS  Google Scholar 

  101. Kauma S, Takacs P, Scordalakes C, Walsh S, Green K, Peng T (2002) Increased endothelial monocyte chemoattractant protein-1 and interleukin-8 in preeclampsia. Obstet Gynecol 100:706–714

    PubMed  CAS  Google Scholar 

  102. Adams KM, Mandel LS, Guthrie KA, Atkinson MW (2003) Interleukin-18 in the plasma of women with preeclampsia. Am J Obstet Gynecol 188:1234–1237

    PubMed  CAS  Google Scholar 

  103. Bachmayer N, Rafik HR, Liszka L, Bremme K, Sverremark-Ekstrom E (2006) Aberrant uterine natural killer (NK)-cell expression and altered placental and serum levels of the NK-cell promoting cytokine interleukin-12 in pre-eclampsia. Am J Reprod Immunol 56:292–301

    PubMed  CAS  Google Scholar 

  104. Jonsson Y, Ruber M, Matthiesen L, Berg G, Nieminen K, Sharma S, Ernerudh J, Ekerfelt C (2006) Cytokine mapping of sera from women with preeclampsia and normal pregnancies. J Reprod Immunol 70:83–91

    PubMed  CAS  Google Scholar 

  105. Opsjon SL, Austgulen R, Waage A (1995) Interleukin-1, interleukin-6 and tumor necrosis factor at delivery in preeclamptic disorders. Acta Obstet Gynecol Scand 74:19–26

    PubMed  CAS  Google Scholar 

  106. Agarwal R, Loganath A, Roy AC, Wong YC, Ng SC (2001) Expression profiles of interleukin-15 in early and late gestational human placenta and in pre-eclamptic placenta. Mol Hum Reprod 7:97–101

    PubMed  CAS  Google Scholar 

  107. Wang Y, Walsh SW (1996) TNF alpha concentrations and mRNA expression are increased in preeclamptic placentas. J Reprod Immunol 32:157–169

    PubMed  CAS  Google Scholar 

  108. Rinehart BK, Terrone DA, Lagoo-Deenadayalan S, Barber WH, Hale EA, Martin JN Jr, Bennett WA (1999) Expression of the placental cytokines tumor necrosis factor alpha, interleukin 1beta, and interleukin 10 is increased in preeclampsia. Am J Obstet Gynecol 181:915–920

    PubMed  CAS  Google Scholar 

  109. Munno I, Chiechi LM, Lacedra G, Putignano G, Patimo C, Lobascio A, Loizzi P (1999) Spontaneous and induced release of prostaglandins, interleukin (IL)-1beta, IL-6, and tumor necrosis factor-alpha by placental tissue from normal and preeclamptic pregnancies. Am J Reprod Immunol 42:369–374

    PubMed  CAS  Google Scholar 

  110. Banerjee S, Smallwood A, Moorhead J, Chambers AE, Papageorghiou A, Campbell S, Nicolaides K (2005) Placental expression of interferon-gamma (IFN-gamma) and its receptor IFN-gamma R2 fail to switch from early hypoxic to late normotensive development in preeclampsia. J Clin Endocrinol Metab 90:944–952

    PubMed  CAS  Google Scholar 

  111. Benyo DF, Miles TM, Conrad KP (1997) Hypoxia stimulates cytokine production by villous explants from the human placenta. J Clin Endocrinol Metab 82:1582–1588

    PubMed  CAS  Google Scholar 

  112. Malek A, Sager R, Schneider H (2001) Effect of hypoxia, oxidative stress and lipopolysaccharides on the release of prostaglandins and cytokines from human term placental explants. Placenta 22(Suppl A):S45–S50

    PubMed  Google Scholar 

  113. Benyo DF, Smarason A, Redman CW, Sims C, Conrad KP (2001) Expression of inflammatory cytokines in placentas from women with preeclampsia. J Clin Endocrinol Metab 86:2505–2512

    PubMed  CAS  Google Scholar 

  114. Hung TH, Charnock-Jones DS, Skepper JN, Burton GJ (2004) Secretion of tumor necrosis factor-alpha from human placental tissues induced by hypoxia–reoxygenation causes endothelial cell activation in vitro: a potential mediator of the inflammatory response in preeclampsia. Am J Pathol 164:1049–1061

    PubMed  CAS  Google Scholar 

  115. Poston L, Briley AL, Seed PT, Kelly FJ, Shennan AH (2006) Vitamin C and vitamin E in pregnant women at risk for pre-eclampsia (VIP trial): randomised placebo-controlled trial. Lancet 367:1145–1154

    PubMed  CAS  Google Scholar 

  116. Rumbold AR, Crowther CA, Haslam RR, Dekker GA, Robinson JS (2006) Vitamins C and E and the risks of preeclampsia and perinatal complications. N Engl J Med 354:1796–1806

    PubMed  CAS  Google Scholar 

  117. Bowen RS, Gu Y, Zhang Y, Lewis DF, Wang Y (2005) Hypoxia promotes interleukin-6 and -8 but reduces interleukin-10 production by placental trophoblast cells from preeclamptic pregnancies. J Soc Gynecol Investig 12:428–432

    PubMed  CAS  Google Scholar 

  118. Kauma SW, Wang Y, Walsh SW (1995) Preeclampsia is associated with decreased placental interleukin-6 production. J Soc Gynecol Investig 2:614–617

    PubMed  CAS  Google Scholar 

  119. Hennessy A, Pilmore HL, Simmons LA, Painter DM (1999) A deficiency of placental IL-10 in preeclampsia. J Immunol 163:3491–3495

    PubMed  CAS  Google Scholar 

  120. Rein DT, Breidenbach M, Honscheid B, Friebe-Hoffmann U, Engel H, Gohring UJ, Uekermann L, Kurbacher CM, Schondorf T (2003) Preeclamptic women are deficient of interleukin-10 as assessed by cytokine release of trophoblast cells in vitro. Cytokine 23:119–125

    PubMed  CAS  Google Scholar 

  121. Caniggia I, Mostachfi H, Winter J, Gassmann M, Lye SJ, Kuliszewski M, Post M (2000) Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFbeta(3). J Clin Invest 105:577–587

    PubMed  CAS  Google Scholar 

  122. Caniggia I, Grisaru-Gravnosky S, Kuliszewsky M, Post M, Lye SJ (1999) Inhibition of TGF-beta 3 restores the invasive capability of extravillous trophoblasts in preeclamptic pregnancies. J Clin Invest 103:1641–1650

    PubMed  CAS  Google Scholar 

  123. Zhou Y, Damsky CH, Fisher SJ (1997) Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J Clin Invest 99:2152–2164

    Article  PubMed  CAS  Google Scholar 

  124. Reister F, Kingdom JC, Ruck P, Marzusch K, Heyl W, Pauer U, Kaufmann P, Rath W, Huppertz B (2006) Altered protease expression by periarterial trophoblast cells in severe early-onset preeclampsia with IUGR. J Perinat Med 34:272–279

    PubMed  CAS  Google Scholar 

  125. Kharfi A, Giguere Y, Sapin V, Masse J, Dastugue B, Forest JC (2003) Trophoblastic remodeling in normal and preeclamptic pregnancies: implication of cytokines. Clin Biochem 36:323–331

    PubMed  CAS  Google Scholar 

  126. Staun-Ram E, Shalev E (2005) Human trophoblast function during the implantation process. Reprod Biol Endocrinol 3:56

    PubMed  Google Scholar 

  127. Zhou Y, Genbacev O, Damsky CH, Fisher SJ (1998) Oxygen regulates human cytotrophoblast differentiation and invasion: implications for endovascular invasion in normal pregnancy and in pre-eclampsia. J Reprod Immunol 39:197–213

    PubMed  CAS  Google Scholar 

  128. Meisser A, Chardonnens D, Campana A, Bischof P (1999) Effects of tumour necrosis factor-alpha, interleukin-1 alpha, macrophage colony stimulating factor and transforming growth factor beta on trophoblastic matrix metalloproteinases. Mol Hum Reprod 5:252–260

    PubMed  CAS  Google Scholar 

  129. Meisser A, Cameo P, Islami D, Campana A, Bischof P (1999) Effects of interleukin-6 (IL-6) on cytotrophoblastic cells. Mol Hum Reprod 5:1055–1058

    PubMed  CAS  Google Scholar 

  130. Librach CL, Feigenbaum SL, Bass KE, Cui TY, Verastas N, Sadovsky Y, Quigley JP, French DL, Fisher SJ (1994) Interleukin-1 beta regulates human cytotrophoblast metalloproteinase activity and invasion in vitro. J Biol Chem 269:17125–17131

    PubMed  CAS  Google Scholar 

  131. Roth I, Fisher SJ (1999) IL-10 is an autocrine inhibitor of human placental cytotrophoblast MMP-9 production and invasion. Dev Biol 205:194–204

    PubMed  CAS  Google Scholar 

  132. Lash GE, Otun HA, Innes BA, Bulmer JN, Searle RF, Robson SC (2005) Inhibition of trophoblast cell invasion by TGFB1, 2, and 3 is associated with a decrease in active proteases. Biol Reprod 73:374–381

    PubMed  CAS  Google Scholar 

  133. Yui J, Garcia-Lloret M, Wegmann TG, Guilbert LJ (1994) Cytotoxicity of tumour necrosis factor-alpha and gamma-interferon against primary human placental trophoblasts. Placenta 15:819–835

    PubMed  CAS  Google Scholar 

  134. Crocker IP, Barratt S, Kaur M, Baker PN (2001) The in-vitro characterization of induced apoptosis in placental cytotrophoblasts and syncytiotrophoblasts. Placenta 22:822–830

    PubMed  CAS  Google Scholar 

  135. Bauer S, Pollheimer J, Hartmann J, Husslein P, Aplin JD, Knofler M (2004) Tumor necrosis factor-alpha inhibits trophoblast migration through elevation of plasminogen activator inhibitor-1 in first-trimester villous explant cultures. J Clin Endocrinol Metab 89:812–822

    PubMed  CAS  Google Scholar 

  136. Renaud SJ, Postovit LM, Macdonald-Goodfellow SK, McDonald GT, Caldwell JD, Graham CH (2005) Activated macrophages inhibit human cytotrophoblast invasiveness in vitro. Biol Reprod 73:237–243

    PubMed  CAS  Google Scholar 

  137. Crocker IP, Tansinda DM, Jones CJ, Baker PN (2004) The influence of oxygen and tumor necrosis factor-alpha on the cellular kinetics of term placental villous explants in culture. J Histochem Cytochem 52:749–757

    PubMed  CAS  Google Scholar 

  138. Leisser C, Saleh L, Haider S, Husslein H, Sonderegger S, Knofler M (2006) Tumour necrosis factor-alpha impairs chorionic gonadotrophin beta-subunit expression and cell fusion of human villous cytotrophoblast. Mol Hum Reprod 12:601–609

    PubMed  CAS  Google Scholar 

  139. Garcia-Lloret MI, Winkler-Lowen B, Guilbert LJ (2000) Monocytes adhering by LFA-1 to placental syncytiotrophoblasts induce local apoptosis via release of TNF-alpha. A model for hematogenous initiation of placental inflammations. J Leukoc Biol 68:903–908

    PubMed  CAS  Google Scholar 

  140. Hauguel-de Mouzon S, Guerre-Millo M (2006) The placenta cytokine network and inflammatory signals. Placenta 27:794–798

    PubMed  CAS  Google Scholar 

  141. Goodwin VJ, Sato TA, Mitchell MD, Keelan JA (1998) Anti-inflammatory effects of interleukin-4, interleukin-10, and transforming growth factor-beta on human placental cells in vitro. Am J Reprod Immunol 40:319–325

    PubMed  CAS  Google Scholar 

  142. Moreau P, Adrian-Cabestre F, Menier C, Guiard V, Gourand L, Dausset J, Carosella ED, Paul P (1999) IL-10 selectively induces HLA-G expression in human trophoblasts and monocytes. Int Immunol 11:803–811

    PubMed  CAS  Google Scholar 

  143. Stallmach T, Hebisch G, Orban P, Lu X (1999) Aberrant positioning of trophoblast and lymphocytes in the feto-maternal interface with pre-eclampsia. Virchows Arch 434:207–211

    PubMed  CAS  Google Scholar 

  144. Wilczynski JR, Tchorzewski H, Banasik M, Glowacka E, Wieczorek A, Lewkowicz P, Malinowski A, Szpakowski M, Wilczynski J (2003) Lymphocyte subset distribution and cytokine secretion in third trimester decidua in normal pregnancy and preeclampsia. Eur J Obstet Gynecol Reprod Biol 109:8–15

    PubMed  CAS  Google Scholar 

  145. Nishino E, Matsuzaki N, Masuhiro K, Kameda T, Taniguchi T, Takagi T, Saji F, Tanizawa O (1990) Trophoblast-derived interleukin-6 (IL-6) regulates human chorionic gonadotropin release through IL-6 receptor on human trophoblasts. J Clin Endocrinol Metab 71:436–441

    Article  PubMed  CAS  Google Scholar 

  146. Heikkinen J, Mottonen M, Alanen A, Lassila O (2004) Phenotypic characterization of regulatory T cells in the human decidua. Clin Exp Immunol 136:373–378

    PubMed  CAS  Google Scholar 

  147. Read S, Powrie F (2001) CD4(+) regulatory T cells. Curr Opin Immunol 13:644–649

    PubMed  CAS  Google Scholar 

  148. Zenclussen AC (2006) Regulatory T cells in pregnancy. Springer Semin Immunopathol 28:31–39

    PubMed  CAS  Google Scholar 

  149. Paeschke S, Chen F, Horn N, Fotopoulou C, Zambon-Bertoja A, Sollwedel A, Zenclussen ML, Casalis PA, Dudenhausen JW, Volk HD, Zenclussen AC (2005) Pre-eclampsia is not associated with changes in the levels of regulatory T cells in peripheral blood. Am J Reprod Immunol 54:384–389

    PubMed  Google Scholar 

  150. Valencia X, Stephens G, Goldbach-Mansky R, Wilson M, Shevach EM, Lipsky PE (2006) TNF downmodulates the function of human CD4+CD25hi T-regulatory cells. Blood 108:253–261

    PubMed  CAS  Google Scholar 

  151. Mantovani A, Bussolino F, Introna M (1997) Cytokine regulation of endothelial cell function: from molecular level to the bedside. Immunol Today 18:231–240

    PubMed  CAS  Google Scholar 

  152. Rusterholz C, Gupta AK, Huppertz B, Holzgreve W, Hahn S (2005) Soluble factors released by placental villous tissue: interleukin-1 is a potential mediator of endothelial dysfunction. Am J Obstet Gynecol 192:618–624

    PubMed  CAS  Google Scholar 

  153. Austgulen R, Lien E, Vince G, Redman CW (1997) Increased maternal plasma levels of soluble adhesion molecules (ICAM-1, VCAM-1, E-selectin) in preeclampsia. Eur J Obstet Gynecol Reprod Biol 71:53–58

    PubMed  CAS  Google Scholar 

  154. Heyl W, Handt S, Reister F, Gehlen J, Mittermayer C, Rath W (1999) The role of soluble adhesion molecules in evaluating endothelial cell activation in preeclampsia. Am J Obstet Gynecol 180:68–72

    PubMed  CAS  Google Scholar 

  155. Takacs P, Green KL, Nikaeo A, Kauma SW (2003) Increased vascular endothelial cell production of interleukin-6 in severe preeclampsia. Am J Obstet Gynecol 188:740–744

    PubMed  CAS  Google Scholar 

  156. Scalera F, Schlembach D, Beinder E (2001) Production of vasoactive substances by human umbilical vein endothelial cells after incubation with serum from preeclamptic patients. Eur J Obstet Gynecol Reprod Biol 99:172–178

    PubMed  CAS  Google Scholar 

  157. Winn HN, Todd HM, Amon E, al Malt A, Molnar M, Hertelendy F (1997) Effects of serum from preeclamptic women on prostacyclin production by human endothelial cells. J Matern Fetal Med 6:249–253

    PubMed  CAS  Google Scholar 

  158. Maynard SE, Min JY, Merchan J, Lim KH, Li J, Mondal S, Libermann TA, Morgan JP, Sellke FW, Stillman IE, Epstein FH, Sukhatme VP, Karumanchi SA (2003) Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest 111:649–658

    PubMed  CAS  Google Scholar 

  159. Levine RJ, Karumanchi SA (2005) Circulating angiogenic factors in preeclampsia. Clin Obstet Gynecol 48:372–386

    PubMed  Google Scholar 

  160. Groten T, Kreienberg R, Fialka I, Huber L, Wedlich D (2000) Altered subcellular distribution of cadherin-5 in endothelial cells caused by the serum of pre-eclamptic patients. Mol Hum Reprod 6:1027–1032

    PubMed  CAS  Google Scholar 

  161. Donker RB, Asgeirsdottir SA, Gerbens F, van Pampus MG, Kallenberg CG, te Meerman GJ, Aarnoudse JG, Molema G (2005) Plasma factors in severe early-onset preeclampsia do not substantially alter endothelial gene expression in vitro. J Soc Gynecol Investig 12:98–106

    PubMed  CAS  Google Scholar 

  162. Mellembakken JR, Aukrust P, Olafsen MK, Ueland T, Hestdal K, Videm V (2002) Activation of leukocytes during the uteroplacental passage in preeclampsia. Hypertension 39:155–160

    PubMed  CAS  Google Scholar 

  163. von Dadelszen P, Hurst G, Redman CW (1999) Supernatants from co-cultured endothelial cells and syncytiotrophoblast microvillous membranes activate peripheral blood leukocytes in vitro. Hum Reprod 14:919–924

    Google Scholar 

  164. Gupta AK, Hasler P, Holzgreve W, Gebhardt S, Hahn S (2005) Induction of neutrophil extracellular DNA lattices by placental microparticles and IL-8 and their presence in preeclampsia. Hum Immunol 66:1146–1154

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a grant form the Swiss National Science Foundation (No. 3200-107625).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corinne Rusterholz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusterholz, C., Hahn, S. & Holzgreve, W. Role of placentally produced inflammatory and regulatory cytokines in pregnancy and the etiology of preeclampsia. Semin Immunopathol 29, 151–162 (2007). https://doi.org/10.1007/s00281-007-0071-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00281-007-0071-6

Keywords

Navigation