Skip to main content

Advertisement

Log in

The combination of oral-recombinant methioninase and azacitidine arrests a chemotherapy-resistant osteosarcoma patient-derived orthotopic xenograft mouse model

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose

Cancers are methionine (MET) and methylation addicted, causing them to be highly sensitive to MET restriction. The present study determined the efficacy of restricting MET with oral-recombinant methioninase (o-rMETase) and the DNA methylation inhibitor, azacitidine (AZA) on a chemotherapy-resistant osteosarcoma patient-derived orthotopic xenograft (PDOX) mouse model.

Methods

The osteosarcoma PDOX models were randomized into five treatment groups of six mice: control; doxorubicin (DOX) alone; AZA alone; o-rMETase alone; o-rMETase-AZA combination. Tumor size and body weight were measured during the 14 days of treatment.

Results

We found that tumor growth was arrested only by the o-rMETase–AZA combination treatment, as tumors with this treatment exhibited tumor necrosis with degenerative change.

Conclusion

This study suggests that o-rMETase-AZA combination has clinical potential for patients with chemoresistant osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Misaghi A, Goldin A, Awad M, Kulidjian AA (2018) Osteosarcoma: a comprehensive review. SICOT J 4:12

    Article  Google Scholar 

  2. Durfee RA, Mohammed M, Luu HH (2016) Review of osteosarcoma and current management. Rheumatol Ther 3(2):221–243

    Article  Google Scholar 

  3. Harrison DJ, Geller DS, Gill JD, Lewis VO, Gorlick R (2018) Current and future therapeutic approaches for osteosarcoma. Expert Rev Anticanc Ther 18(1):39–50

    Article  CAS  Google Scholar 

  4. Miwa S, Takeuchi A, Ikeda H, Shirai T, Yamamoto N, Nishida H et al (2013) Prognostic value of histological response to chemotherapy in osteosarcoma patients receiving tumor-bearing frozen autograft. PLoS One 8(8):e71362

    Article  CAS  Google Scholar 

  5. Jaffe N (2009) Osteosarcoma: review of the past, impact on the future. The American experience. Cancer Treat Res 152:239–262

    Article  Google Scholar 

  6. Wang Z, Yip LY, Lee JHJ, Wu Z, Chew HY, Chong PKW et al (2019) Methionine is a metabolic dependency of tumor-initiating cells. Nat Med 25(5):825–837

    Article  CAS  Google Scholar 

  7. Hoffman RM, Erbe RW (1976) High in vivo rates of methionine biosynthesis in transformed human and malignant rat cells auxotrophic for methionine. Proc Natl Acad Sci USA 73(5):1523–1527

    Article  CAS  Google Scholar 

  8. Stern PH, Hoffman RM (1984) Elevated overall rates of transmethylation in cell lines from diverse human tumors. In vitro 20(8):663–670

    Article  CAS  Google Scholar 

  9. Stern PH, Wallace CD, Hoffman RM (1984) Altered methionine metabolism occurs in all members of a set of diverse human tumor cell lines. J Cell Physiol 119(1):29–34

    Article  CAS  Google Scholar 

  10. Coalson DW, Mecham JO, Stern PH, Hoffman RM (1982) Reduced availability of endogenously synthesized methionine for S-adenosylmethionine formation in methionine-dependent cancer cells. Proc Natl Acad Sci USA 79(14):4248–4251

    Article  CAS  Google Scholar 

  11. Hoffman RM, Jacobsen SJ (1980) Reversible growth arrest in simian virus 40-transformed human fibroblasts. Proc Natl Acad Sci USA 77(12):7306–7310

    Article  CAS  Google Scholar 

  12. Yano S, Li S, Han Q, Tan Y, Bouvet M, Fujiwara T et al (2014) Selective methioninase-induced trap of cancer cells in S/G2 phase visualized by FUCCI imaging confers chemosensitivity. Oncotarget 5(18):8729–8736

    Article  Google Scholar 

  13. Hoffman RM, Jacobsen SJ, Erbe RW (1979) Reversion to methionine independence in simian virus 40-transformed human and malignant rat fibroblasts is associated with altered ploidy and altered properties of transformation. Proc Natl Acad Sci USA 76(3):1313–1317

    Article  CAS  Google Scholar 

  14. Hoffman RM (2015) Development of recombinant methioninase to target the general cancer-specific metabolic defect of methionine dependence: a 40-year odyssey. Expert Opin Biol Ther 15(1):21–31

    Article  CAS  Google Scholar 

  15. Kawaguchi K, Han Q, Li S, Tan Y, Igarashi K, Murakami T et al (2019) Efficacy of recombinant methioninase (rMETase) on recalcitrant cancer patient-derived orthotopic xenograft (PDOX) mouse models: a review. Cells 8(5):410

    Article  CAS  Google Scholar 

  16. Higuchi T, Kawaguchi K, Miyake K, Han Q, Tan Y, Oshiro H et al (2018) Oral recombinant methioninase combined with caffeine and doxorubicin induced regression of a doxorubicin-resistant synovial sarcoma in a PDOX mouse model. Anticancer Res 38(10):5639–5644

    Article  CAS  Google Scholar 

  17. Igarashi K, Kawaguchi K, Kiyuna T, Miyake K, Miyaki M, Yamamoto N et al (2018) Metabolic targeting with recombinant methioninase combined with palbociclib regresses a doxorubicin-resistant dedifferentiated liposarcoma. Biochem Biophys Res Commun 506(4):912–917

    Article  CAS  Google Scholar 

  18. Kawaguchi K, Miyake K, Han Q, Li S, Tan Y, Igarashi K et al (2018) Oral recombinant methioninase (o-rMETase) is superior to injectable rMETase and overcomes acquired gemcitabine resistance in pancreatic cancer. Cancer Lett 432:251–259

    Article  CAS  Google Scholar 

  19. Miyake K, Kiyuna T, Li S, Han Q, Tan Y, Zhao M et al (2018) Combining tumor-selective bacterial therapy with Salmonella typhimurium A1-R and cancer metabolism targeting with oral recombinant methioninase regressed an Ewing’s sarcoma in a patient-derived orthotopic xenograft model. Chemotherapy 63(5):278–283

    Article  CAS  Google Scholar 

  20. Sato T, Issa JJ, Kropf P (2017) DNA hypomethylating drugs in cancer therapy. Cold Spring Harb Perspect Med 7(5):a026948

    Article  Google Scholar 

  21. Gailhouste L, Liew LC, Hatada I, Nakagama H, Ochiya T (2018) Epigenetic reprogramming using 5-azacytidine promotes an anti-cancer response in pancreatic adenocarcinoma cells. Cell Death Dis 9(5):468

    Article  Google Scholar 

  22. Wang X, Chen E, Yang X, Wang Y, Quan Z, Wu X et al (2016) 5-azacytidine inhibits the proliferation of bladder cancer cells via reversal of the aberrant hypermethylation of the hepaCAM gene. Oncol Rep 35(3):1375–1384

    Article  CAS  Google Scholar 

  23. Kratzsch T, Kuhn SA, Joedicke A, Hanisch UK, Vajkoczy P, Hoffmann J et al (2018) Treatment with 5-azacitidine delay growth of glioblastoma xenografts: a potential new treatment approach for glioblastomas. J Cancer Res Clin Oncol 144(5):809–819

    Article  CAS  Google Scholar 

  24. Connolly RM, Li H, Jankowitz RC, Zhang Z, Rudek MA, Jeter SC et al (2017) Combination epigenetic therapy in advanced breast cancer with 5-azacitidine and entinostat: a phase II national cancer institute/stand up to cancer study. Clin Cancer Res 23(11):2691–2701

    Article  CAS  Google Scholar 

  25. Festuccia C, Gravina GL, D’Alessandro AM, Muzi P, Millimaggi D, Dolo V et al (2009) Azacitidine improves antitumor effects of docetaxel and cisplatin in aggressive prostate cancer models. Endocr Relat Cancer 16(2):401–413

    Article  CAS  Google Scholar 

  26. Miyake K, Kiyuna T, Kawaguchi K, Higuchi T, Oshiro H, Zhang Z et al (2019) Regorafenib regressed a doxorubicin-resistant Ewing’s sarcoma in a patient-derived orthotopic xenograft (PDOX) nude mouse model. Cancer Chemother Pharmacol 83(5):809–815

    Article  CAS  Google Scholar 

  27. Higuchi T, Miyake K, Oshiro H, Sugisawa N, Yamamoto N, Hayashi K et al (2019) Trabectedin and irinotecan combination regresses a cisplatinum-resistant osteosarcoma in a patient-derived orthotopic xenograft nude mouse model. Biochem Biophys Res Commun 513(2):326–331

    Article  CAS  Google Scholar 

  28. Tan Y, Xu M, Tan X, Tan X, Wang X, Saikawa Y et al (1997) Overexpression and large-scale production of recombinant l-methionine-alpha-deamino-gamma-mercaptomethane-lyase for novel anticancer therapy. Protein Expr Purif 9(2):233–245

    Article  CAS  Google Scholar 

  29. Higuchi T, Miyake K, Sugisawa N, Oshiro H, Zhang Z, Razmjooei S et al (2019) Olaratumab combined with doxorubicin and ifosfamide overcomes individual doxorubicin and olaratumab resistance of an undifferentiated soft-tissue sarcoma in a PDOX mouse model. Cancer Lett 451:122–127

    Article  CAS  Google Scholar 

  30. Chen XG, Ma L, Xu JX (2018) Abnormal DNA methylation may contribute to the progression of osteosarcoma. Mol Med Rep 17(1):193–199

    CAS  PubMed  Google Scholar 

  31. Xu J, Li D, Cai Z, Zhang Y, Huang Y, Su B, Ma R (2017) An integrative analysis of DNA methylation in osteosarcoma. J Bone Oncol 9:34–40

    Article  Google Scholar 

  32. Zhang K, Gao J, Ni Y (2017) Screening of candidate key genes associated with human osteosarcoma using bioinformatics analysis. Oncol Lett 14(3):2887–2893

    Article  Google Scholar 

  33. Diao C, Xi Y, Xiao T (2018) Identification and analysis of key genes in osteosarcoma using bioinformatics. Oncol Lett 15(3):2789–2794

    PubMed  Google Scholar 

Download references

Acknowledgements

This paper is dedicated to the memory of Reese Imhoff.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shree Ram Singh, Hiroyuki Tsuchiya or Robert M. Hoffman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest. AntiCancer Inc. uses PDOX models for contract research. QH and YT are employees of AntiCancer Inc. TH, NS, JY, HO, NY, KH, HK, SM, KI and RMH are or were unsalaried associates of AntiCancer Inc.

Ethical approval

The mouse investigations were carried out using an AntiCancer, Inc. Institutional Animal Care and Use Committee (IACUC) protocol specifically approved for this study as previously described and as per the principles and procedures provided in the National Institutes of Health (NIH) Guide for the Care and Use of Animals under Assurance Number A3873-1 [26, 27].

Informed consent

Written informed consent was obtained from the patient as part of a UCLA Institutional Review Board approved protocol (IRB#10-001857).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Higuchi, T., Sugisawa, N., Yamamoto, J. et al. The combination of oral-recombinant methioninase and azacitidine arrests a chemotherapy-resistant osteosarcoma patient-derived orthotopic xenograft mouse model. Cancer Chemother Pharmacol 85, 285–291 (2020). https://doi.org/10.1007/s00280-019-03986-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-019-03986-0

Keywords

Navigation