Skip to main content

Advertisement

Log in

Pharmacology of the paclitaxel–cisplatin, gemcitabine–cisplatin, and paclitaxel–gemcitabine combinations in patients with advanced non-small cell lung cancer

  • Original Article
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Abstract

Purpose: To compare the pharmacology of the paclitaxel–cisplatin, gemcitabine–cisplatin and paclitaxel–gemcitabine combinations in patients with advanced non-small cell lung cancer (NSCLC). Patients and methods: Twenty-four chemo-naive patients with advanced NSCLC were randomized to receive one of the three regimens. Plasma pharmacokinetics and pharmacologic parameters in mononuclear cells were compared and related to toxicity and efficacy. Results: Pharmacological parameters of gemcitabine and cisplatin were not influenced by the combination with one of the other agents, while the paclitaxel clearance was significantly lower for the combination with cisplatin as compared to gemcitabine (P=0.024). The percentage decrease in platelets was significantly higher for the gemcitabine combinations (P=0.004) and related to the dFdCTP-Cmax (P=0.030). Pharmacologic parameters were not related to response or survival. Conclusions: Gemcitabine and cisplatin pharmacology were not influenced by the combination with one of the other agents, while paclitaxel has a lower clearance in combination with cisplatin as compared to gemcitabine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Schiller JH, Harrington D, Belani CP et al (2002) Comparison of four chemotherapy regimens for advanced non-small cell lung cancer. N Engl J Med 346:92–98

    Article  PubMed  CAS  Google Scholar 

  2. Smit EF, Van Meerbeeck JPAM, Lianes P et al (2003) Three-arm randomized study of two cisplatin-based regimens and paclitaxel plus gemcitabine in advanced non-small cell lung cancer: a phase III trial of the European Organisation for research and treatment of cancer Lung cancer group-EORTC 08975. J Clin Oncol 21:3909–3917

    Article  PubMed  CAS  Google Scholar 

  3. Peters GJ, van der Wilt CL, van Moorsel CJ, Kroep JR, Bergman AM, Ackland SP (2000) Basis for effective combination cancer chemotherapy with antimetabolites. Pharmacol Ther 87:227–253

    Article  PubMed  CAS  Google Scholar 

  4. Aapro MS, Martin C, Hatty S (1998) Gemcitabine—a safety review. Anticancer Drugs 9:191–201

    Article  PubMed  CAS  Google Scholar 

  5. van Moorsel CJ, Bergman AM, Veerman G et al (2000) Differential effects of gemcitabine on ribonucleotide pools of twenty-one solid tumor and leukemia cell lines. Biochim Biophys Acta 1474:5–12

    PubMed  Google Scholar 

  6. Heinemann V, Xu YZ, Chubb S et al (1992) Cellular elimination of 2′,2′-difluorodeoxycytidine 5’-triphosphate: a mechanism of self-potentiation. Cancer Res 52:533–539

    PubMed  CAS  Google Scholar 

  7. Hertel LW, Boder GB, Kroin JS et al (1990) Evaluation of the antitumor activity of gemcitabine (2′,2′-difluoro-2′-deoxycytidine). Cancer Res 50:4417–4422

    PubMed  CAS  Google Scholar 

  8. Kroep JR, Giaccone G, Tolis C et al (2000) Sequence dependent effect of paclitaxel on gemcitabine metabolism in relation to cell cycle and cytotoxicity in non-small-cell lung cancer cell lines. Br J Cancer 83:1069–1076

    Article  PubMed  CAS  Google Scholar 

  9. Schiff PB, Fant J, Horwitz SB (1979) Promotion of microtubule assembly in vitro by taxol. Nature 277:665–667

    Article  PubMed  CAS  Google Scholar 

  10. Non-small Cell Lung Cancer Collaborative Group (1995) Chemotherapy in non-small cell lung cancer: a meta-analysis using updated data on individual patients from 52 randomized clinical trials. BMJ 311:899–909

    Google Scholar 

  11. Sherman SE, Lippard SJ (1987) Structural aspects of platinum anticancer drug interactions with DNA. Chem Rev 87:1153–1181

    Article  CAS  Google Scholar 

  12. Schellens JHM, Ma J, Planting AS et al (1996) Relationship between the exposure to cisplatin, DNA-adduct formation in leucocytes and tumour response in patients with solid tumors. Br J Cancer 73:1569–1575

    PubMed  CAS  Google Scholar 

  13. Rowinsky EK, Gilbert MR, McGuire WP et al (1991) Sequences of taxol and cisplatin: a phase I and pharmacologic study. J Clin Oncol 9:1692–1703

    PubMed  CAS  Google Scholar 

  14. Rowinsky EK, Citardi MJ, Noe DA, Donehower RC (1993) Sequence-dependent cytotoxic effects due to combinations of cisplatin and the antimicrotubule agents taxol and vincristine. J Cancer Res Clin Oncol 119:727–733

    Article  PubMed  CAS  Google Scholar 

  15. Kroep JR, Giaccone G, Voorn DA et al (1999) Gemcitabine and paclitaxel: pharmacokinetic and pharmacodynamic interactions in patients with non-small-cell lung cancer. J Clin Oncol 17:2190–2197

    PubMed  CAS  Google Scholar 

  16. Bergman AM, Ruiz van Haperen VWT, Veerman G, Kuiper CM, Peters GJ (1996) Synergistic interaction between cisplatin and gemcitabine in vitro. Clin Cancer Res 2:521–530

    PubMed  CAS  Google Scholar 

  17. van Moorsel CJ, Pinedo HM, Veerman G, Vermorken JB, Postmus PE, Peters GJ (1999) Scheduling of gemcitabine and cisplatin in Lewis lung tumour bearing mice. Eur J Cancer 35:808–814

    Article  PubMed  Google Scholar 

  18. van Moorsel CJ, Kroep JR, Pinedo HM et al (1999) Pharmacokinetic schedule finding study of the combination of gemcitabine and cisplatin in patients with solid tumors. Ann Oncol 10:441–448

    Article  PubMed  Google Scholar 

  19. Kroep JR, Peters GJ, van Moorsel CJ et al (1999) Gemcitabine-cisplatin: a schedule finding study. Ann Oncol 10:1503–1510

    Article  PubMed  CAS  Google Scholar 

  20. Peters GJ, Schwartsmann G, Nadal JC et al (1990) In vivo inhibition of the pyrimidine de novo enzyme dihydroorotic acid dehydrogenase by brequinar sodium (DUP-785; NSC 368390) in mice and patients. Cancer Res 50:4644–4649

    PubMed  CAS  Google Scholar 

  21. Huizing MT, Keung AC, Rosing H et al (1993) Pharmacokinetics of paclitaxel and metabolites in a randomized comparative study in platinum-pretreated ovarian cancer patients. J Clin Oncol 11:2127–2135

    PubMed  CAS  Google Scholar 

  22. Korst AE, van der Sterre ML, Gall HE, Fichtinger-Schepman AM, Vermorken JB, van der Vijgh WJ (1998) Influence of amifostine on the pharmacokinetics of cisplatin in cancer patients. Clin Cancer Res 4:331–336

    PubMed  CAS  Google Scholar 

  23. Huizing MT, Giaccone G, van Warmerdam LJ et al (1997) Pharmacokinetics of paclitaxel and carboplatin in a dose-escalating and dose-sequencing study in patients with non-small-cell lung cancer. The European Cancer Center. J Clin Oncol 15:317–329

    PubMed  CAS  Google Scholar 

  24. Crul M, Schoemaker NE, Pluim D et al (2003) Randomized phase I clinical and pharmacologic study of weekly versus twice-weekly dose-intensive cisplatin and gemcitabine in patients with advanced non-small cell lung cancer. Clin Cancer Res 9:3526–3533

    PubMed  CAS  Google Scholar 

  25. Theodossiou C, Cook JA, Fisher J et al (1998) Interaction of gemcitabine with paclitaxel and cisplatin in human tumor cell lines. Int J Oncol 12:825–832

    PubMed  CAS  Google Scholar 

  26. Fogli S, Danesi R, De Braud F et al (2001) Drug distribution and pharmacokinetic/pharmacodynamic relationship of paclitaxel and gemcitabine in patients with non-small-cell lung cancer. Ann Oncol 12:1553–1559

    Article  PubMed  CAS  Google Scholar 

  27. Abbruzzese JL, Grunewald R, Weeks EA et al (1991) A phase I clinical, plasma, and cellular pharmacology study of gemcitabine. J Clin Oncol 9:491–498

    PubMed  CAS  Google Scholar 

  28. Peters GJ, Schornagel JH, Milano GA (1993) Clinical pharmacokinetics of anti-metabolites. Cancer Surv 17:123–156

    PubMed  CAS  Google Scholar 

  29. Kuenen BC, Rosen L, Smit EF et al (2002) Dose-finding and pharmacokinetic study of cisplatin, gemcitabine, and SU5416 in patients with solid tumors. J Clin Oncol 20:1657–1667

    Article  PubMed  CAS  Google Scholar 

  30. LeBlanc GA, Sundseth SS, Weber GF, Waxman DJ (1992) Platinum anticancer drugs modulate P-450 mRNA levels and differentially alter hepatic drug and steroid hormone metabolism in male and female rats. Cancer Res 52:540–547

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Eli Lilly & Co International, The Netherlands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. J. Peters.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kroep, J.R., Smit, E.F., Giaccone, G. et al. Pharmacology of the paclitaxel–cisplatin, gemcitabine–cisplatin, and paclitaxel–gemcitabine combinations in patients with advanced non-small cell lung cancer. Cancer Chemother Pharmacol 58, 509–516 (2006). https://doi.org/10.1007/s00280-006-0191-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00280-006-0191-z

Keywords

Navigation