Skip to main content

Advertisement

Log in

Effect of storage temperature and antibiotic impregnation on the quantity of bone morphogenetic protein seven in human bone grafts

  • Original Paper
  • Published:
International Orthopaedics Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to quantify the amount of bone morphogenic protein 7 (BMP-7) in bone samples in different storage and treatment conditions used in bone banks and thereby evaluate the benefit of this test as a routine measure before bone grafting.

Methods

Fresh as well as frozen bone chips, each with and without antibiotic impregnation, were screened for their BMP-7 content. Human bone chips were produced from femoral heads of two female donors who had undergone total hip replacement surgery. The amount of BMP-7 was detected using a commercially available enzyme-linked immunosorbent assay (ELISA) test.

Results

There were no significant differences between groups in samples obtained from the first femoral head. Bone-chip samples derived from the second femoral head showed significant differences between groups. The actual amount of these differences was small and most likely biologically irrelevant. It is important to note that there was a significant difference between groups when comparing both femoral heads, reflecting donor-to-donor variability.

Conclusion

ELISA testing for BMP-7 as a qualitative measurement of bone grafts should be considered a routine quality-control test for bone banks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Coraca-Huber DC, Hausdorfer J, Fille M, Nogler M (2012) Effect of storage temperature on gentamicin release from antibiotic-coated bone chips. Cell Tissue Bank. doi:10.1007/s10561-012-9339-8

    Google Scholar 

  2. Hinsenkamp M, Muylle L, Eastlund T, Fehily D, Noel L, Strong DM (2012) Adverse reactions and events related to musculoskeletal allografts: reviewed by the World Health Organisation Project NOTIFY. Int Orthop 36:633–641. doi:10.1007/s00264-011-1391-7

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Lewis CS, Katz J, Baker MI, Supronowicz PR, Gill E, Cobb RR (2011) Local antibiotic delivery with bovine cancellous chips. J Biomater Appl 26:491–506. doi:10.1177/0885328210375729

    Article  CAS  PubMed  Google Scholar 

  4. Bormann N, Pruss A, Schmidmaier G, Wildemann B (2010) In vitro testing of the osteoinductive potential of different bony allograft preparations. Arch Orthop Trauma Surg 130:143–149. doi:10.1007/s00402-009-0908-7

    Article  CAS  PubMed  Google Scholar 

  5. Mathijssen NM, Hannink G, Pilot P, Schreurs BW, Bloem RM, Buma P (2012) Impregnation of bone chips with alendronate and cefazolin, combined with demineralized bone matrix: a bone chamber study in goats. BMC Musculoskelet Disord 13:44. doi:10.1186/1471-2474-13-44

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Coraca-Huber DC, Putzer D, Fille M, Hausdorfer J, Nogler M, Kuhn KD (2013) Gentamicin palmitate as a new antibiotic formulation for mixing with bone tissue and local release. Cell Tissue Banking. doi:10.1007/s10561-013-9384-y

    Google Scholar 

  7. Bundesministerium fuer Gesundheit FuJ (2013) Verordnung der Bundesministerin fuer Gesundheit, Familie und Jugend, mit der naehere Regelungen fuer den Betrieb von Gewebebanken getroffen werden (Gewebebankenverordenung-GBVO). In: Austria B (ed) 32006L0017. Bundeskanzleramt Austria, Vienna, Austria. p. 8

  8. Bundesministerium fuer Gesundheit FuJ (2013) Verordnung der Bundesministerin fuer Gesundheit, Familie und Jugend zur Festlegung von Standards fuer die Gewinnung von zur Verwendung beim Menschen bestimmter menschlicher Zellen und Geweben (Gewebeentnahmeeinrichtungsverordnung-GEEVO). In: Austria B (ed) 32006L0017. Bundeskanzleramt Austria, Vienna, Austria. p. 8

  9. Bundesministerium fuer Gesundheit FuJ (2013) Bundesgesetz ueber die Festlegung von Qualitaets- und Sicherheitsstandards fuer die Gewinnung, Verarbeitung, Lagerung und Verteilung von menschlichen Zellen und Geweben zur Verwendung beim Menschen (Gewebesicherheitsgesetz-GSG). In: Austria B (ed) 32006L0086. Bundeskanzleramt Austria, Vienna, Austria. p. 18

  10. Chen G, Deng C, Li YP (2012) TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci 8:272–288. doi:10.7150/ijbs.2929

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Kumar V, Abbas AK, Fausto N, Aster JC (2010) Tissue Renewal, Regeneration, and Repair. In: Kumar V, Abbas AK, Fausto N, Aster JC (eds) Robbins and Cotran Pathologic Basis of Disease Saunders. Elsevier, Philadelphia, PA, p 1450

    Google Scholar 

  12. Belfrage O, Flivik G, Sundberg M, Kesteris U, Tagil M (2011) Local treatment of cancellous bone grafts with BMP-7 and zoledronate increases both the bone formation rate and bone density: a bone chamber study in rats. Acta Orthop 82:228–233. doi:10.3109/17453674.2011.566138

    Article  PubMed Central  PubMed  Google Scholar 

  13. Maurer T, Zimmermann G, Maurer S, Stegmaier S, Wagner C, Hansch GM (2012) Inhibition of osteoclast generation: a novel function of the bone morphogenetic protein 7/osteogenic protein 1. Mediat Inflamm 2012:171209. doi:10.1155/2012/171209

    Article  Google Scholar 

  14. Ai-Aql ZS, Alagl AS, Graves DT, Gerstenfeld LC, Einhorn TA (2008) Molecular mechanisms controlling bone formation during fracture healing and distraction osteogenesis. J Dent Res 87:107–118

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Takata M, Sugimoto N, Yamamoto N, Shirai T, Hayashi K, Nishida H, Tanzawa Y, Kimura H, Miwa S, Takeuchi A, Tsuchiya H (2011) Activity of bone morphogenetic protein-7 after treatment at various temperatures: freezing vs. pasteurization vs. allograft. Cryobiology 63:235–239. doi:10.1016/j.cryobiol.2011.09.001

    Article  CAS  PubMed  Google Scholar 

  16. Ohta H, Wakitani S, Tensho K, Horiuchi H, Wakabayashi S, Saito N, Nakamura Y, Nozaki K, Imai Y, Takaoka K (2005) The effects of heat on the biological activity of recombinant human bone morphogenetic protein-2. J Bone Miner Metab 23:420–425. doi:10.1007/s00774-005-0623-6

    Article  CAS  PubMed  Google Scholar 

  17. Nakanishi K, Sato K, Sato T, Takahashi M, Fukaya N, Miura T (1992) Preservation of bone morphogenetic protein in heat-treated bone. Nihon Seikeigeka Gakkai zasshi 66:949–955

    CAS  PubMed  Google Scholar 

  18. Pikal-Cleland KA, Rodrıguez-Hornedo N, Amidon GL, Carpenter JF (2000) Protein Denaturation during Freezing and Thawing in Phosphate Buffer Systems: Monomeric and Tetrameric b-Galactosidase. Arch Biochem Biophys 384:398–406. doi:10.1006/abbi.2000.2088

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowlegments

We thank Birgit Ladner from the Bone Bank and Department of Blood Transfusion and Immunology, Innsbruck Medical University, for their comments and improvement of this manuscript. We thank Prof. Klaus-Dieter Kühn from Heraeus Medical GmbH for sponsoring the antibiotics.

Conflicts of interest

This study was carried out with internal funds from Experimental Orthopedics, Innsbruck Medical University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Débora C. Coraça-Huber.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wurm, A., Nogler, M., Ammann, C.G. et al. Effect of storage temperature and antibiotic impregnation on the quantity of bone morphogenetic protein seven in human bone grafts. International Orthopaedics (SICOT) 38, 1513–1517 (2014). https://doi.org/10.1007/s00264-014-2349-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00264-014-2349-3

Keywords

Navigation